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Computational aeroacoustics equations are developed using a Janzen–Rayleigh
expansion of the compressible flow equations. Separate expansions are applied to an
inner region characterized to lowest order by an incompressible flow field and an outer
region characterized by propagating acoustic waves. Several perturbation equation
sets are developed in the inner and outer regions by truncating the expanded equations
using different orders in the perturbation variable,ε, whereε2 is proportional to the
square of the Mach number characterizing the flow. Composite equation sets are con-
structed by matching the equations governing the inner and outer regions. The
highest-order perturbation continuity and momentum equations include an infinite
series inε2 and are shown to be identical to the equations used in the expansion about
incompressible flow approach. As such, the perturbation analysis is used to interpret
the physical meaning of the perturbation variables and to highlight the assumptions
inherent in this approach. Differences between numerical solutions obtained with the
composite equation sets are evaluated for two unsteady flow problems. The lowest-
order perturbation equation set is shown to yield adequate acoustic predictions for
low Mach number flows. This equation set is considerably simpler to implement into
a numerical solver and reduces the required CPU time relative to the highest-order
equation set. c© 2000 Academic Press

I. INTRODUCTION

The problem of predicting the sound generated by an unsteady flow field is one of
significant practical interest. Computational aeroacoustics (CAA), which encompasses the
application of computational methods to this problem, is emerging as a viable field due to
advances in the speed and memory of high-performance computers. Despite these advances
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there are several issues, distinct from those of the more mature field of computational fluid
dynamics (CFD), that have limited the widespread application of CAA. These issues have
been well documented for direct simulation (i.e., simultaneous computation of the near and
far fields) of low Mach number (M) flows and are due, in part, to the disparity in scales
associated with the near and far fields [1–3]. The near field has length scales that characterize
the vortical flow, such as shear layer thickness or turbulent eddy size. These characteristic
length scales are extremely small for moderate-to-high Reynolds number flows. The far field
has length scales associated with the acoustic waves. For low frequencies and low Mach
numbers, the far-field length scales can be many orders of magnitude larger than those
characterizing the vortical flow. This wide variation in length scales directly affects the cost
of direct simulation. A small near-field length scale requires the use of a small time step,
whereas a large far-field length scale requires the use of a large computational domain. There
is also large disparity in the amplitude of the near-field and far-field oscillations (e.g., the ratio
of far-field to near-field kinetic energy fluctuations is on the order ofM4) [4]. Simultaneous
resolution of these fields requires careful numerical treatment, such as the use of high-
order numerical algorithms to minimize dispersion and dissipation error, and non-reflecting
boundary conditions to reduce non-physical reflection from the computational boundaries.

The acoustic analogy provides a simplified approach that avoids the issues associated
with direct simulation of low Mach number flow generated sound. In this approach, the
governing equations are cast in the form of an inhomogeneous wave equation for a quantity
(e.g., density) that becomes an acoustic fluctuation (e.g., acoustic density) in the far field.
The inhomogeneity is generally considered the “source” of sound, which is non-zero in
the near field. Several different forms of the acoustic analogy have been proposed to either
provide different physical interpretation of the sources of sound or simplify the terms used
to represent these sources [5–7]. For Lighthill’s acoustic analogy [5], the wave equation
takes the non-dimensional form

∂2ρ

∂t2
− 1

M2

∂2ρ

∂xi ∂xi
= ∂2Ti j

∂xi ∂xj
(1)

with

Ti j = ρui u j + δi j

(
p− 1

M2
ρ

)
− 1

Re
τi j , (2)

whereρ is the density,ui , is the velocity vector,p is the pressure,τi j is the viscous stress
tensor,t is time, xi are the Cartesian coordinates, and Re is the Reynolds number. IfTi j

is known, the solution to Eq. (1) can be determined using Green’s functions [8]. For low
Mach number flows, a common approximation is to assumeTi j ≈ T (0)

i j , whereT (0)
i j is the

stress tensor formed using the incompressible flow field (i.e.,T (0)
i j = ρ∞u0i u0 j , whereρ∞

is the ambient thermodynamic density, andu0i is the incompressible velocity vector). The
assumption to neglect the compressible portion ofρui u j has been analyzed by Crow [9],
who considered the following expansion of the right-hand side of Eq. (1),

∂2Ti j

∂xi ∂xj
= ∂2

∂xi ∂xj

(
T (0)

i j + M2T (2)
i j + · · ·

)
, (3)

whereρ has been non-dimensionalized byρ∞. The second-order termM2T (2)
i j is of orderM2

smaller thanT (0)
i j and is required to make the left- and right-hand sides of Eq. (1) consistent

since∂2ρ/∂t2 is of the same order. Despite this, Crow concluded that the approximation
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Ti j ≈ T (0)
i j is adequate for low Mach number, “uncomplicated” flows that do not contain

extensive source regions. However, for flows with moderate-to-high Mach numbers, and
for flows with acoustic source regions of the same order as or larger than the acoustic
wavelength, the termM2T (2)

i j is important to the convection, refraction, and generation
of the acoustic field. Modifications to Lighthill’s acoustic analogy have been proposed in
order to account for such effects. Lilley’s [10] equation is one such modification that casts
the wave operator in a form that reduces to that of the moving-medium wave equation. In
this way, Lilley’s equation accounts for the effects of convection and refraction. A general
solution of Lilley’s equation cannot be obtained through the use of Green’s functions. Such
solutions will typically require the use of numerical methods and are significantly more
expensive to obtain relative to the solution of Eq. (1). More recently, Ristorcelli [11] has
developed a modification to Lighthill’s acoustic analogy in an attempt to account for sound
generation due to compressible portions ofρui u j (i.e., theM2T (2)

i j source term of Eq. (3)).

TheM2T (2)
i j source terms are determined directly from the incompressible flow field and do

not account for the effects of the mean flow on convecting and refracting the acoustic field.
Hardin and Pope [12] have proposed a computational aeroacoustics technique that, sim-

ilar to the acoustic analogy approach, avoids some of the issues and difficulties associated
with direct simulation. This technique, called expansion about incompressible flow (EIF),
is applicable to subsonic flows and uses acoustic source terms determined from the so-
lution of the equations governing incompressible flow. In the EIF approach the velocity
vector and pressure are split into incompressible and perturbation quantities,ui = u0i + u′i
and p= p1+ p′, whereu′i is the perturbation velocity vector,p1 is the hydrodynamic
pressure, andp′ is the perturbation pressure. In addition, the density is split according
to ρ= ρ0+ ρ1+ ρ ′, whereρ0 is the thermodynamic density, andρ1 is the hydrodynamic
density, andρ ′ is the perturbation density. The equations governing the acoustic field are
developed by first substituting the split variables into the compressible flow equations, and
then subtracting the incompressible flow equations. The resulting equations are

∂ρ ′

∂t
+ ∂

∂xi
[(ρ0+ ρ1+ ρ ′)u′i + ρ ′u0i ] = −∂ρ1

∂t
− u0i

∂ρ1

∂xi
(4a)

∂

∂t
[(ρ0+ ρ1+ ρ ′)u′i + ρ ′u0i ] + ∂

∂xj
[(ρ0+ ρ1)(u0i u

′
j + u0 j u

′
i + u′i u

′
j )]

+ ∂

∂xj
[ρ ′(u0i u0 j + u0i u

′
j + u0 j u

′
i + u′i u

′
j )] +

∂p′

∂xi
= −∂(ρ1u0i )

∂t
− ∂(ρ1u0i u0 j )

∂xj
. (4b)

In the development of Eq. (4b), the effect of viscous action on the acoustic variables has
been neglected. These equations have been written in such a way that only the acoustic source
terms (i.e., terms that are constructed entirely from the incompressible flow solution) appear
on the right-hand side of each equation. By splitting the flow field into incompressible and
perturbation parts, and by neglecting the viscous terms in the acoustic equation, the EIF
approach has been designed with the intent of accommodating the different discretization
requirements resulting from the disparate length scales associated with low Mach number
flows. The small vortical length scales are resolved by solving the incompressible flow
equations on a hydrodynamic grid, and the large acoustic length scales are resolved by
solving Eqs. (4a) and (4b) on a separate acoustic grid. In addition, the EIF approach allows
for specification of different boundary condition types and locations for the near-field and
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far-field quantities. One limitation of this approach is that it does not account for the effects
of back scatter (i.e., acoustic feedback onto the underlying flow field).

Equations of state relatingp1 to ρ1, andp′ to ρ ′ andρ1, complete the EIF approach. The
first of these relations is given by [12]

ρ1 = 1

c2
o

(p1− p̃1), (4c)

where

p̃1 = lim
t→∞

1

t

t∫
0

p1(xi , t) dt.

The rationale for subtracting out the time-averaged pressure,p̃1, in computingρ1 is that the
time-averaged pressure is primarily the result of non-isentropic effects and that these effects
are slow relative to an acoustic time scale. For the second equation of state two different
forms have been proposed [12]:

p′ = c2(ρ ′ + ρ1) (4d)

and

p′ = p0

(
ρ0+ ρ1+ ρ ′

ρ0

)γ
− p1. (4e)

Equation (4d) has been used for a flow field with significant viscous effects [13], whereas
Eq. (4e) has been used for inviscid flows [12, 14].

As described above, the EIF equations were developed by simply splitting the flow field
into thermodynamic, incompressible, and acoustic parts. Because of this simple decompo-
sition, the benefits and limitations of the approach, the inherent assumptions of the resulting
set of equations, and the significance of the perturbation quantities in various regions of
the flow are not clearly defined. In addition, Eqs. (4c) and (4d) were developed using a
heuristic approach. In the present investigation, the EIF continuity and momentum equa-
tions are developed using a perturbation analysis. In a consistent fashion, new equations
relating p1 to ρ1 and p′ to ρ ′ andρ1, are also established. The perturbation analysis uses
a Janzen–Rayleigh (i.e., Mach number squared) expansion about the thermodynamic field,
extending the approach to include flows with significant heat release and/or heat conduction.
This analysis will be shown to be valid in an inner region that is characterized to lowest
order by the incompressible flow equations. Outside this region, the equations transition to
a different set of equations that govern the propagation of acoustic waves. This transition
is associated with the variation in scales associated with the inner and outer flow fields.
Composite equations, valid over the entire flow field, are constructed using a technique
analogous to the “additive composition” [15] method. These equations are applied in the
numerical solution of the aeroacoustic fields associated with two unsteady flows.

II. ANALYSIS

The following analysis is performed in five sections, starting with an introduction of
the governing equations in Section A. In Section B, a Janzen–Rayleigh expansion of the
governing equations is used to develop a sequence of perturbation equation sets by equating
terms of like order in the perturbation variable. In Sections C and D, a sequence of near-field
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EIF equation sets and pressure–density relations are constructed from these perturbation
equations. In Section E, the equations in Section C are rewritten in a form similar to that
used in acoustic analogies. In addition, the uniformity of these equations is extended out
to the far field by matching acoustic wave equations with the near-field EIF equations
using a technique analogous to the additive composition matching method. In Section F, the
developed equation sets are compared to Lighthill’s acoustic analogy. In Section G, some
numerical considerations of these equation sets are discussed.

A. Governing Equations

The generation and propagation of sound due to viscous flow are completely characterized
by the compressible continuity, momentum and energy equations, and an equation of state,

∂ρ

∂t
+ ∂ρui

∂xi
= 0 (5a)

ρ
∂ui

∂t
+ ρu j

∂ui

∂xj
= − 1

γM2

∂p

∂xi
+ 1

Re

∂τi j

∂xj
+ ρFi (5b)

1

γM2

[
ρ
∂T

∂t
+ρui

∂T

∂xi

]
= 1

γM2

[
1

Pr Re

∂qi

∂xi
+q′′′ + (γ − 1)

γ

(
∂p

∂t
+ui

∂p

∂xi

)]
+ (γ − 1)

Re
8

(5c)

p = ρT, (5d)

whereT is temperature,Fi is the body force per unit volume, Pr is the Prandtl number,γ is the
specific heat ratio,8 is the viscous dissipation function,q′′′ is heat release per unit volume,
and qi is the heat flux vector(qi = ∂(kT)/∂xi ). These equations have been developed
assuming an ideal fluid with constant specific heat (cp) and have been non-dimensionalized
usingu∞, ρ∞, L∞, µ∞, k∞, andT∞. Note that the energy equation, Eq. (5c), could have
been simplified by multiplying each side byγM2. However, Eq. (5c) provides a form
convenient for perturbation analysis as discussed later in this paper.

B. Janzen–Rayleigh Expansion

The Janzen–Rayleigh expansion is an asymptotic perturbation analysis method that has
been previously used to evaluate the effects of compressibility for certain flows [15]. It is per-
formed by expanding each of the non-dimensionalized independent variables of Eqs. (5a)–
(5d) in a power series inε, whereε2= γM2,

p = p0+ ε2 p̄1+ ε4 p̄2+ ε6 p̄3+ · · · = p0+ p1+ p2+ p3+ · · · ,
ρ = ρ0+ ε2ρ̄1+ ε4ρ̄2+ ε6ρ̄3+ · · · = ρ0+ ρ1+ ρ2+ ρ3+ · · · ,
ui = u0i + ε2ū1i + ε4ū2i + ε6ū3i + · · · = u0i + u1i + u2i + u3i + · · · ,
T = T0+ ε2T̄1+ ε4T̄2+ ε6T̄3+ · · · = T0+ T1+ T2+ T3+ · · · ,

(6)

wherep1= ε2 p̄1, p2= ε4 p̄2, etc. As seen in these expansions, the first-order correction is
proportional toγM2, with higher-order corrections using successive powers ofγM2. The
basis of the Janzen–Rayleigh expansion is that a series of equations can be developed by
substituting Eqs. (6) into the governing equations, Eqs. (5a)–(5d), and then grouping terms
of like order inε. The expansion is valid for arbitrary values ofε, so long asε is less than unity
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(i.e., the flow is subsonic). With this constraint, the expansion yields a convergent solution
in the near field or inner region of the flow [15]. Substituting Eqs. (6) into Eqs. (5a)–(5d),
and grouping terms of lowest order inε (i.e.,ε−2) yields the “zeroth-order” approximation

∂p0

∂xi
= 0 (7a)

ρ0
∂T0

∂t
+ ρ0u0i

∂T0

∂xi
= 1

Pr Re

∂q0i

∂xi
+ q′′′ + (γ − 1)

γ

∂p0

∂t
(7b)

p0

ρ0
= T0, (7c)

whereq0i is constructed using gradients ofT0. Grouping terms of orderε0 yields the “first-
order” approximation

∂ρ0

∂t
+ ∂ρ0u0i

∂xi
= 0 (8a)

ρ0
∂u0i

∂t
+ ρ0u0 j

∂u0i

∂xj
= − 1

γM2

∂p1

∂xi
+ 1

Re

∂τ0i j

∂xj
+ ρ0Fi (8b)

ρ0
∂T1

∂t
+ ρ0u0i

∂T1

∂xi
+ ρ1

∂T0

∂t
+ (ρ1u0i + ρ0u1i )

∂T0

∂xi

= 1

Pr Re

∂2q1i

∂xi
+ (γ − 1)

γ

(
∂p1

∂t
+ u0i

∂p1

∂xi

)
+ M2γ (γ − 1)

Re
80 (8c)

p1− ρ1T0

ρ0
= T1, (8d)

where80 and τ0i j are constructed using gradients ofu0i , andq1i is constructed using
gradients ofT1. Grouping terms of orderε2 yields the “second-order” approximation

∂(ρ0u1i )

∂xi
= −∂ρ1

∂t
− u0i

∂ρ1

∂xi
(9a)

∂(ρ0u1i )

∂t
+ ∂

∂xj
[ρ0(u0i u1 j +u0 j u1i )]+ 1

γM2

∂p2

∂xi
− 1

Re

∂τ1i j

∂xj
= −∂(ρ1u0i )

∂t
− ∂(ρ1u0i u0 j )

∂xj

(9b)

ρ0
∂T2

∂t
+ ρ1

∂T1

∂t
+ ρ0u0i

∂T2

∂xi
+ ρ1u0i

∂T1

∂xi
+ (ρ1u1i + ρ0u2i + ρ2u0i )

∂T0

∂xi

= 1

Pr Re

∂2q2i

∂xi
+ (γ − 1)

γ

(
∂p2

∂t
+ u0i

∂p2

∂xi
+ u1i

∂p1

∂xi
+ u2i

∂p0

∂xi

)
+ M2γ (γ − 1)

Re
81 (9c)

p2− ρ1T1− ρ2T0

ρ0
= T2, (9d)

where81 andτ1i j are constructed using gradients ofu1i , andq2i is constructed using gradi-
ents ofT2. The zeroth-order approximation governs the thermodynamic field (p0, ρ0, T0), the
first-order approximation governs the hydrodynamic field (p1, ρ1, u0i , T1), and the second-
order approximation governs anM2 approximation of the perturbation (i.e., compressible)
field (p2, ρ2, u1i , T2) for M < 1. Equations (7), (8), (9a), and (9b) represent a closed sys-
tem. High values ofε (assumingε <1) will require higher-order expansions to accurately
characterize the compressibility of the flow field. If one is interested in the temperature
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fluctuations due to the near-field compressibility, or a higher-order approximation of the
corresponding density and velocity field, Eqs. (9c) and (9d) and a “third-order” continuity
and momentum equation of orderε4 must be solved,

∂ρ2

∂t
+ ∂(ρ0u2i + ρ1u1i + ρ2u0i )

∂xi
= 0 (10a)

∂

∂t
[ρ0u2i + ρ1u1i + ρ2u0i ] + ∂

∂xj
[ρ0(u0i u2 j + u0 j u2i + u1i u1 j )]

+ ∂

∂xj
[ρ1(u0i u1 j + u0 j u1i )+ ρ2(u0i u0 j )] + 1

γM2

∂p3

∂xi
− 1

Re

∂τ2i j

∂xj
= 0. (10b)

This process can be continued, yielding equations accurate to orderε6, orderε8, etc. Bound-
ary conditions for these equations are obtained by substituting Eqs. (6) into the compressible
flow boundary conditions. Although this yields a mathematically consistent problem, there
is some difficulty in specifying boundary conditions for subsonic flows with moderate Mach
numbers. The expanded form of these boundary conditions requires knowledge of both the
incompressible and perturbation velocity fields. The latter is rarely known in practice.

C. The Near-Field EIF Equations

One of the goals of this investigation is to derive the equations in the EIF approach using a
perturbation technique so as to better understand the underlying assumptions and limitations
of this approach. This is accomplished by considering the case of a non-varying thermody-
namic field (i.e.,p0= ρ0= T0= 1) and by neglecting the viscous terms in all of the equations
except the lowest remaining order (i.e., the hydrodynamic equations). Under these assump-
tions, theO(ε0) inner region equations are obtained; that is, Eqs. (8a) and (8b) become

∂u0i

∂xi
= 0 (11a)

∂u0i

∂t
+ u0 j

∂u0i

∂xj
=− 1

γM2

∂p1

∂xi
+ 1

Re

∂τ0i j

∂xj
+ Fi . (11b)

These equations are recognized as the incompressible continuity and momentum equations.
Simplified forms of the higher-order equations (e.g., Eqs. (9) and (10)) could be developed
in a similar fashion. However, to obtain an orderε4 or higher approximation of the near-field
compressibility effects with such equations would be computationally cumbersome: The
individual terms in the perturbation expansion would have to be solved using a series of
equation sets, each with source terms developed from the solutions of lower-order equations
in the series. A preferable approach would involve the solution of a single equation set for
the entire pertubation field up to some order inε. This would involve summing equation
sets and is greatly aided by defining the perturbation quantities

ρ ′ =
n∑

m=2

ε2mρ̄m (12a)

u′i =
n∑

m=1

ε2mūmi (12b)

p′ =
n∑

m=2

ε2m p̄m, (12c)
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where the quantitiesρ ′, u′i , p′ represent an orderε2n approximation of the entire density,
velocity, and pressure perturbation fields, respectively. Using the perturbation quantities
defined by Eqs. (12b) and (12c) withn= 1, O(ε2) inner region equations are obtained
from simplified forms of Eqs. (9a) and (9b),

∂u′i
∂xi
= −∂ρ1

∂t
− u0i

∂ρ1

∂xi
(13a)

∂u′i
∂t
+ ∂(u0i u′j + u0 j u′i )

∂xj
+ 1

γM2

∂p′

∂xi
= −∂(p1u0i )

∂t
− ∂(ρ1u0i u0 j )

∂xj
. (13b)

O(ε4) inner region equations are obtained by combining Eqs. (9a) and (9b) with (10a)
and (10b) and by usingn= 2 in Eqs. (12a)–(12c),

∂ρ2

∂t
+ ∂

∂xi
[(1+ ρ1)u

′
i + ρ ′u0i ] = −∂ρ1

∂t
− u0i

∂ρ1

∂xi
(14a)

∂

∂t
[(1+ ρ1)u

′
i + ρ ′u0i ] + ∂

∂xj
[(1+ ρ1)(u0i u

′
j + u0 j u

′
i )+ u′i u

′
j ]

+ ∂

∂xj
[(ρ ′u0i u0 j )] + 1

γM2

∂p′

∂xi
= −∂(ρ1u0i )

∂t
− ∂(ρ1u0i u0 j )

∂xj
. (14b)

The process used in developing these equations can be repeated indefinitely in extending
the order ofε beyond that of Eqs. (14a) and (14b). If the entire series of higher-order equa-
tions (i.e., equations with terms of orderε2, ε4, ε6, ε8, etc.) are combined, the “baseline”
inner region equations are obtained,

∂ρ ′

∂t
+ ∂

∂xi
[(1+ ρ1+ ρ ′)u′i + ρ ′u0i ] = −∂ρ1

∂t
− u0i

∂ρ1

∂xi
(15a)

∂

∂t
[(1+ ρ1+ ρ ′)u′i + ρ ′u0i ] + ∂

∂xj
[(1+ ρ1)(u0i u

′
j + u0 j u

′
i + u′i u

′
j )]

+ ∂

∂xj
[ρ ′(u0i u0 j + u0i u

′
j + u0 j u

′
i + u′i u

′
j )] +

1

γM2

∂p′

∂xi
= −∂(ρ1u0i )

∂t
− ∂(ρ1u0i u0 j )

∂xj
,

(15b)

wheren=∞ has been used in Eqs. (12a)–(12c). The dimensional forms of Eqs. (15a)
and (15b) are identical to the EIF acoustic continuity and momentum equations given by
Eqs. (4a) and (4b). Since these equations include an infinite power series expansion in
M2, they are theoretically applicable to subsonic flows in the near field. Extending the
applicability of the equations to include the outer, far-field region will be addressed later in
this paper.

D. Pressure–Density Relations

The source terms shown on the right-hand side of Eqs. (13)–(15) are completely de-
termined by solution of the incompressible flow equations and Eqs. (8c) and (8d). For
constantρ0 and p0, these latter equations can be combined into a pressure form of the
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energy equation,

Dp1

Dt
− γ Dρ1

Dt
= 1

Pr Re

∂q1i

∂xi
+ M2γ (γ − 1)

Re
80. (16a)

In an approach analogous to neglecting the viscous terms in the development of Eqs. (13)–
(15), Eq. (16a) can be simplified by neglecting the diffusion terms,

Dp1

Dt
− γ Dρ1

Dt
= 0. (16b)

Equation (16b) can be considered as the simple statement,p1= γρ1. The dimensional
form of this relation differs from the relation originally proposed for the EIF equations,
Eq. (4c), sinceρ1 is related to the entirep1 field, not just the unsteady component of
this field (i.e., the time average of the hydrodynamic pressure is not subtracted out). It
can be shown that time-averaged pressures are significant, even for isentropic flows (e.g.,
the classical acoustic problem of an oscillating sphere in an inviscid medium). These time-
averaged pressures modify the unsteady source contributions due to unsteady hydrodynamic
velocity fluctuations (e.g., the unsteady contributions due tou0i u0 j in the source term
∂(ρ1u0i u0 j )/∂xj that appears in Eqs. (13b), (14b), and (15b)). Based on this, Eq. (16b)
provides a more complete relation betweenp1 andρ1. This result is advantageous since
a time-averaged pressure need not be computed prior to computing the perturbation field.
In addition to avoiding the extra effort associated with computing this pressure, Eq. (16b)
allows the EIF approach to be used for transient flows (i.e., non-stationary flows in which
a time-averaged hydrodyamic pressure field is not clearly defined).

Simplified equations forp′ can be established in a similar fashion by combining the
isentropic forms of Eqs. (9c) and (9d) with the higher-order energy equations and equations
of state,

Dp′

Dt
− γ Dρ ′

Dt
− γ D5n

Dt
= 0, (17)

where5n is order εn and is a non-linear function ofρ1 and ρ ′ (e.g.,54= ( γ−1
2 )ρ2

1,

56=54+ ( γ−1
2 )(

γ−2
3 )ρ3

1 + (γ − 1)ρ1ρ
′, etc.), and the definitions ofp′ andρ ′ are the same

as the definitions used in Eqs. (13)–(15), depending on which equation set is being solved.
Equation (17) is equivalent to anM2-expansion of the isentropic relationp= ργ and can
be solved along material lines assuming a quiescent initial field to yieldp′ = γ (ρ ′ +5n).
Numerical testing using the baseline EIF equations, and separately using Eqs. (4d) and (17),
has shown that Eq. (17) provides the correct relationship betweenp′, ρ ′, andρ1, given the
stated assumptions.

E. Extension to the Far Field: The Composite EIF Equations

As described previously by several investigators [9, 16, 17], the aeroacoustic problem
consists of two primary length scales: an “inner” length scale associated with the incom-
pressible flow field (e.g., the size of a turbulent eddy,`) and in “outer” length scale,λ,
associated with propagating acoustic waves. In addition to the inner and outer length scales,
Crow [9] describes a third relevant length scale,3, associated with the extent of the source
region. If3 is of the same order asλ, the source region is considered non-compact and can
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interact with the acoustic field resulting in convection and refraction effects. These effects
will be described in more detail later in this paper. The inner and outer length scales are
related to each other such that`/λ∼M , while the relevant velocity scales in the inner and
outer regions are related byu∞∼Mco. If the governing equations are non-dimensionalized
using the outer region scales, the process of expanding each of the variables and equating
like powers ofε results in adifferentset of equations relative to those developed using the
Janzen–Rayleigh expansion in the inner region. As such, the inner region equations are
not uniformly valid over the entire flow field. The matched asymptotic expansion (MAE)
approach [15] is a singular perturbation method that has been used to address this issue. In
this approach, separate equations are developed for the inner and outer regions. The outer
region is governed by wave equations for ˆρ2, ρ̂3, ρ̂4, etc., where ˆρn is thenth term in an
outer region expansion. The inner region is governed by the equations developed using the
Janzen–Rayleigh expansion. Separate solutions are obtained for the equations governing
the inner and outer regions. The harmonic functions in these separate solutions are then
matched in some “intermediate” region based on the order ofε of each function. In this
way, a composite solution can be constructed that is asymptotically valid over the entire
flow domain.

The non-uniformity of the equations developed using the Janzen–Rayleigh expansion can
be best illustrated by first considering acoustic analogy formulations of theO(ε0)-,O(ε2)-,
O(ε4)-, and baseline EIF inner region equations. These formulations, which will also be
used to facilitate the development of the composite EIF equations, can be developed by
subtracting the time derivative of the perturbation continuity equation from the divergence
of the perturbation momentum equation. Equation (17) can then be used to eliminatep′,

− 1

M2

∂2ρ1

∂xi ∂xi
= ∂2(u0i u0 j )

∂xi ∂xj
(18)

− 1

M2

∂2ρ ′

∂xi ∂xi
− ∂2

∂xi ∂xj
[(u0i u

′
j + u0 j u

′
i )] = −

∂2ρ1

∂t2
+ 1

M2

∂254

∂xi ∂xi
+ ∂

2(ρ1u0i u0 j )

∂xi ∂xj
(19)

∂2ρ2

∂t2
− 1

M2

∂2ρ ′

∂xi ∂xi
− ∂2

∂xi ∂xj
[(1+ ρ1)(u0i u

′
j + u0 j u

′
i )+ u′i u

′
j + ρ ′u0i u0 j )

= −∂
2ρ1

∂t2
+ 1

M2

∂256

∂xi ∂xi
+ ∂

2(ρ1u0i u0 j )

∂xi ∂xj
(20)

∂2ρ ′

∂t2
− 1

M2

∂2ρ ′

∂xi ∂xi
− ∂2

∂xi ∂xj
[(1+ ρ1+ ρ ′)(u0i u

′
j + u0 j u

′
i + u′i u

′
j )+ ρ ′u0i u0 j ]

= −∂
2ρ1

∂t2
+ 1

M2

∂25∞
∂xi ∂xi

+ ∂
2(ρ1u0i u0 j )

∂xi ∂xj
, (21)

where Eq. (18) has been developed from Eqs. (11a) and (11b), and Eqs. (19)–(21) have
been developed from Eqs. (13)–(15), respectively. The primed quantities in each of these
acoustic analogy formulations are consistent with the definitions used in developing
Eqs. (13)–(15).

To develop outer region equations analogous to Eqs. (18)–(21), a separate outer re-
gion expansion of each dependent variable is constructed. For example, the density in
the outer region is expanded usingρ= 1+1(εn)(ε2 ˆ̄ρ2+ ε4 ˆ̄ρ3+ ε6 ˆ̄ρ4+ · · ·)= 1+
ρ̂2+ ρ̂3+ ρ̂4+ · · ·, where1(εn) is a gauge function determined through the matching of
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the inner and outer solutions. Similarly, the velocity field is expanded usingui = û0i + û1i +
û2i + û3i + · · ·. The sequence for velocity in the outer region is shified byM relative to
that in the inner region (̂uni =Muni ) since the velocity field has been non-dimensionalized
using the outer region velocity scale. The dimensional form of the first term in the velocity
expansion is equivalent to the hydrodynamic velocity,u0i . This quantity is uniform in the far
field (i.e., its gradients are zero) such that there are no far-field density gradients resulting
from û0i . This is consistent with the results of previous MAE investigations [17] in which
the sequence for the higher-order density terms in the outer region has been shown to be
shifted byε2 relative to that of the inner region (i.e.,1(εn)= ε2, such that the second term
in the outer expansion of density, ˆρ2, is orderε4 in the inner region). Using this result,
we can construct an outer region acoustic analogy equation analogous to the inner region
O(ε2)-equation (Eq. (19)) as

∂2ρ̂2

∂ t̂2
− ∂2ρ̂2

∂ x̂i ∂ x̂i
= ∂2(û0i û1 j + û1i û0 j )

∂ x̂i ∂ x̂ j
. (22)

In Eq. (22), the independent variables,x̂i and t̂ have been non-dimensionalized using the
outer length and velocity scales. This equation can be rewritten using the inner-region-
dependent variables as anO(ε4)-equation,

∂2ρ2

∂ t̂2
− ∂2ρ2

∂ x̂i ∂ x̂i
− M2∂

2(u0i u1 j + u1i u0 j )

∂ x̂i ∂ x̂ j
= 0. (23)

As the relevant length and velocity scales transition fromO(`) toO(λ), Eq. (19) transitions
to Eq. (23). These equations are similar to the inner and outer equations used by Crow
in his MAE analysis. By comparing the inner and outer region equations, it can be seen
that Eq. (19) is not uniformly valid over the entire flow field. The term∂2ρ2/∂t2 has been
excluded in Eq. (19), whereas the entire right-hand side of Eq. (19) has been excluded in
Eq. (23). These terms are ultimately responsible for the proper matching of the inner and
outer solutions. If the analysis is not carried further than the order ofε resolved by Eqs. (19)
and (23), then orderε4 terms can be added to theO(ε2) inner region equation without
affecting the accuracy of this equation,

∂2ρ ′

∂t2
− 1

M2

∂2ρ ′

∂xi ∂xi
− ∂2

∂xi ∂xj
[(u0i u

′
j + u0 j u

′
i )] = −

∂2ρ1

∂t2
+ 1

M2

∂254

∂xi ∂xi
+ ∂

2(ρ1u0i u0 j )

∂xi ∂xj
.

(24)

The development of Eq. (24) is similar to the additive composition method described by
Van Dyke [15]. In this method, the composite expansion is constructed by summing the
inner and outer solutions. This sum is then corrected by subtracting the part that these
solutions have in common. In the development of Eq. (24), this corresponds to subtracting
the quantities

− 1

M2
∂2ρ ′/∂xi ∂xi and −∂2(u0i u1 j + u1i u0 j )/∂xi ∂xj

from the sum of Eqs. (19) and (23). The principal difference between the additive compo-
sition method and that used in the current investigation is that the equations, as opposed to
the corresponding solutions, have been matched.
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The process used in developing Eq. (24) can also be used to develop composite forms of
Eqs. (20) and (21),

∂2ρ ′

∂t2
− 1

M2

∂2ρ ′

∂xi ∂xi
− ∂2

∂xi ∂xj
[(1+ ρ1)(u0i u

′
j + u0 j u

′
i )+ u′i u

′
j + ρ ′u0i u0 j ]

= −∂
2ρ1

∂t2
+ 1

M2

∂256

∂xi ∂xi
+ ∂

2(ρ1u0i u0 j )

∂xi ∂xj
(25)

∂2ρ ′

∂t2
− 1

M2

∂2ρ ′

∂xi ∂xi
− ∂2

∂xi ∂xj
[(1+ ρ1+ ρ ′)(u0i u

′
j + u0 j u

′
i + u′i u

′
j )+ ρ ′u0i u0 j ]

= −∂
2ρ1

∂t2
+ 1

M2

∂25∞
∂xi ∂xi

+ ∂
2(ρ1u0i u0 j )

∂xi ∂xj
. (26)

Equations (24)–(26) are composite equations with the same inner region order ofε

accuracy as Eqs. (19)–(21). The source terms in these equations are identical to each other
since they are of orderε2. Thus, differences between the acoustic analogy formulations of
theO(ε2)-,O(ε4)-, and baseline composite EIF equations are only seen in the flow–acoustic
interaction terms (i.e., the third term on the left-hand side of each equation). The solution
of Eqs. (24)–(26) can be loosely considered as a matched singular perturbation solution,
using the nomenclature of Refs. [9, 16, 17], since the actual matching is performed on the
equations as opposed to the solutions.

A procedure similar to that used to develop Eqs. (24)–(26) can be used to develop
composite forms of the continuity and momentum equations. This involves the addition of
time derivatives of orderεn+2 density terms to theO(εn) inner region continuity equation,
as shown below:

O(ε2) Composite EIF EquationsO(ε2) Inner Region,O(ε4) Outer Region

∂ρ ′

∂t
+ ∂u′i
∂xi
= −∂ρ1

∂t
− u0i

∂ρ1

∂xi
(27a)

∂u′i
∂t
+ ∂(u0i u′j + u0 j u′i )

∂xj
+ 1

γM2

∂p′

∂xi
= − (∂ρ1u0i )

∂t
− ∂(ρ1u0i u0 j )

∂xj
. (27b)

O(ε4) Composite EIF EquationsO(ε4) Inner Region,O(ε6) Outer Region

∂ρ ′

∂t
+ ∂

∂xi
[(1+ ρ1)u

′
i + ρ ′u0i ] = −∂ρ1

∂t
− u0i

∂ρ1

∂xi
(28a)

∂

∂t
[(1+ ρ1)u

′
i + ρ ′u0i ] + ∂

∂xj
[(1+ ρ1)(u0i u

′
j + u0 j u

′
i )+ u′i u

′
j ]

+ ∂

∂xj
[ρ ′u0i u0 j ] + 1

γM2

∂p′

∂xi
= −∂(ρ1u0i )

∂t
− ∂(ρ1u0i u0 j )

∂xj
. (28b)

Baseline Composite EIF EquationsO(ε∞) Inner Region,O(ε∞) Outer Region

∂ρ ′

∂t
+ ∂

∂xi
[(1+ ρ1+ ρ ′)u′i + ρ ′u0i ] = −∂ρ1

∂t
− u0i

∂ρ1

∂xi
(29a)
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∂

∂t
[(1+ ρ1+ ρ ′)u′i + ρ ′u0i ] + ∂

∂xj
[(1+ ρ1)(u0i u

′
j + u0 j u

′
i + u′i u

′
j )]

+ ∂

∂xj
[ρ ′(u0i u0 j + u0i u

′
j + u0 j u

′
i + u′i u

′
j )] +

1

γM2

∂p′

∂xi
= −∂(ρ1u0i )

∂t
− ∂(ρ1u0i u0 j )

∂xj
.

(29b)

Note that the form of the inner region and composite equations are identical for theO(ε4)

and baseline cases. Although the form is identical, the definition ofρ ′ used in the composite
equations provides the correct interpretation ofρ ′ in the outer region.

Even though the baseline EIF equations can be constructed to include an infinite power
series inε, solutions obtained with these equations can only be considered approximate.
The approximation stems from the fact that the outer region equations are not matched with
theO(ε0)-inner region equations. For example, if the procedure used to develop Eqs. (24)–
(26) is followed in matching Eqs. (18) and (23), the following composite equations can be
developed:

O(ε0) Composite EquationsO(ε0) Inner Region,O(ε2) Outer region

∂ρ ′

∂t
+ ∂u0i

∂xi
= 0 (30a)

∂u0i

∂t
+ u0 j

∂u0i

∂xj
= − 1

γM2

∂(p1+ p′)
∂xi

+ 1

Re

∂τ0i j

∂xj
+ Fi . (30b)

Equations (30a) and (30b) have been used in low Mach number acoustic simulations by
Reitsma [18], who referred to them as the finite compressibility equations. Note that the
acoustic field is coupled to the incompressible field such thatu0i is no longer solenoidal.
As a result,ρ ′ consists of a more extensive density field than implied by Eq. (23); i.e.,
it inherently includesρ1. These equations highlight an approximation implicit in the use
of Eqs. (24)–(26): The perturbation field has no interaction with the incompressible flow
equations (i.e., acoustic back scatter effects are neglected). Therefore, the EIF equations
should only be used to simulate aeroacoustic fields when these effects are negligible. Note
that this is also a limitation of the MAE approach.

F. Comparison with Lighthill’s Acoustic Analogy

The acoustic analogy formulations given by Eqs. (24)–(26) can be written in a form more
consistent with Lighthill’s acoustic analogy, Eq. (1), by using Eq. (18) and the relation
ρ = 1+ ρ1+ ρ ′. This is performed below for Eq. (26):

∂2ρ

∂t2
− 1

M2

∂2ρ

∂xi ∂xi
− ∂2

∂xi ∂xj
[ρ(u0i u

′
j + u0 j u

′
i + u′i u

′
j )+ ρ ′u0i u0 j ]

= 1

M2

∂25∞
∂xi ∂xi

+ ∂
2(u0i u0 j )

∂xi ∂xj
+ ∂

2ρ1(u0i u0 j )

∂xi ∂xj
. (31)

The most significant difference between this equation and Eq. (1) is that flow–acoustic
interaction terms have been separated from the sound generation process. Separation of
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these terms is strictly dictated by the perturbation analysis. This contrasts with the some-
what ad hoc separation of these terms in other approaches such as in the development of
Lilley’s equation. The first term on the right-hand side of Eq. (31),(1/M2)∂25∞/∂xi ∂xi ),
is equivalent to theδi j (p− (1/M2)p) contribution in the Eq. (1) source term. The last term
on the right-hand side of Eq. (31), which includes the hydrodynamic density (ρ1), is similar
to Term I of the following compressible “correction” (Tc

i j ) posed by Ristorcelli [11]:

∂2Tc
i j

∂xi ∂xj
= ∂2ρ1u0i u0 j

∂xi ∂xj︸ ︷︷ ︸
Term I

− 2
∂

∂xj

(
u0 j

Dρ1

Dt

)
︸ ︷︷ ︸

Term II

. (32)

The second compressible correction term, Term II, was derived from the irrotational com-
ponent of the fluid–acoustic interaction term (i.e., the third term on the left-hand side of
Eq. (31)) in an attempt to account for convection and refraction effects. The effects of
the flow-acoustic interaction terms in the composite EIF equations, as well as the first
compressible correction term (Term I in Eq. (32)) are evaluated under Numerical Results.

G. Resolution of Disparate Acoustic and Convective Length Scales:
Numerical Considerations

One of the advantages of the EIF approach cited in the Introduction is that the technique
accommodates the disparate length scales (i.e., acoustic and convective) associated with
low Mach number aerodynamically generated sound. The smallest convective length scales
are resolved on a hydrodynamic grid, while the acoustic length scales are resolved on a
separate acoustic grid. Unfortunately, the hydrodynamic and acoustic grid spacing require-
ments are not independent from one another since the acoustic grid must accurately resolve
the relevant convective length scales characterizing the source terms associated with the
acoustic wavelengths of interest. For some problems this would require that the acoustic
grid spacing be the same as or similar to that used in the hydrodynamic grid. However, for
many flows the smallest scale hydrodynamic fluctuations are negligible contributors to the
overall radiated sound field, even though these scales may be important to the development
of the hydrodynamic flow field. For such flows, it may be possible to use an acoustic grid
with coarser spacing relative to that used in the hydrodynamic grid.

Although the small-scale hydrodynamic fluctuations may be physically unimportant to
the overall radiated sound, the numerical interpolation of these small scales from a fine
hydrodynamic grid onto a coarse acoustic grid could result in errors in the magnitude and
distribution of the acoustic source field. One approach used in the current investigation
to help reduce such errors is to construct the acoustic source terms with their associated
gradients on the hydrodynamic grid and to then interpolate these terms onto the acoustic
grid. This reduces the discretization error relative to the alternate approach of interpolating
the incompressible flow primitive variables onto the acoustic grid and computing the source
terms using the same level of discretization provided by the acoustic grid spacing. Aliasing
error associated with using different grid resolutions in the hydrodynamic and acoustic
solutions depends on the magnitude of the acoustic sources arising from hydrodynamic
scales that are not resolved by the acoustic grid. For some problems, such as the sound
generation and radiation due to fine grain turbulence, this error may be difficult to assess
and low-pass filtering of the acoustic source field may ultimately be required before this
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field is interpolated onto the acoustic grid. In the current investigation (see Section III),
the simulated flow fields were resolved using both simple analytical models and dissipative
numerical methods such that the resulting hydrodynamic fields are not characterized by a
large range in wavenumbers. The acoustic grids used in these simulations were designed to
resolve this entire range. This reduced interpolation errors to acceptable levels as confirmed
by a grid refinement study.

III. NUMERICAL RESULTS

A. Baseline Composite EIF Equations

The baseline composite EIF equations, Eqs. (29), along with the appropriate pressure–
density relations, have been implemented into a CAA solver using a second-order
MacCormack [19] scheme with a generalized body-fitted coordinate system. Radiation
to the far field is treated using a perfectly matched layer [20, 21] (PML) non-reflecting
boundary condition. The source terms that appear in the composite EIF equations are com-
puted on the grid used for the incompressible flow solution and interpolated in space onto
the acoustic grid using bilinear interpolation functions. Previous grid refinement studies
[22] showed that 20 points per wavelength is required with the MacCormack scheme. In
this paper, a minimum of 25 points per wavelength is used in all of the reported simula-
tions. The incompressible Navier–Stokes flow solver [23, 24] used in this investigation is
finite difference based (central spatial differencing and full non-orthogonal viscous terms)
and uses a Briley–MacDonald linearized block, alternating direction implicit scheme. The
governing equations are cast in primitive variable form in curvilinear coordinates, using a
pseudo-compressibility term in the continuity equation to efficiently link the updates of the
velocity and pressure fields. Time-accurate solutions are obtained with the incompressible
flow solver using a subiteration approach [25], which extends the pseudo-compressibility
method to time-accurate incompressible flows by subiterating each physical time step to
drive the divergence of velocity to zero.

The CAA solver has been applied to several fundamental problems including sound
generated due to a spinning vortex pair and a forced planar shear layer [22]. The basic con-
figuration for the spinning vortex pair is shown in Fig. 1. The vortices have a characteristic
rotating Mach number defined asMr = roω/co, wherero is the radius at which the vortices
rotate about some origin, andω is the angular velocity of this rotation. The angular velocity
is related toro and the vortex circulation(0) by ω=0/4πr 2

o . For the spinning vortex pair
problem, the source terms used in the EIF equations were determined analytically from the
inner (hydrodynamic) portion of an MAE solution [26]. An acoustic solution was obtained
on a rectangular domain using a uniform grid with 78,961 uniformly spaced grid points
(1xi = 2ro). The acoustic solution, which is shown in Figs. 1b and 1c, was computed for 10
periods (i.e., 10 revolutions of the vortex pair) using1t = 0.0041,Mr = 0.05, and0= 0.2π .
Note the grid spacing used in the solution may appear to be insufficient in resolving the
relevant near-field source terms. However, it can be shown that the relevant source term
length scale is the length scale describing the hydrodynamic pressure variation. This scale is
adequately resolved with1xi = 2ro and was verified by performing a grid sensitivity study
[22, 27]. For grid spacings less than1xi = 3ro the solution was shown to be grid indepen-
dent. The solution shown in Fig. 1c is seen to be in good agreement with the outer (acoustic)
portion of the MAE solution, at least forro> 40. Some differences are seen near the vortex
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FIG. 1. Spinning vortex pair. (a) Configuration. (b) Acoustic density field. The computational grid (every
other grid point shown for clarity) is deformed 2× 103 times the acoustic density field, which ranges between
−4× 10−5 and 4× 10−5; dark lines outline the PML region. (c) Comparison of computed and MAE predicted
acoustic pressure forMr = 0.05.
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cores (ro< 10) and near the first peak in the acoustic field (ro= 30). These differences are
due to three principal reasons. First, the MAE solution only includes quadrupole terms
(i.e., higher-order effects such as those due to octupole terms were excluded in the MAE
analysis). These higher-order terms are inherently included in the EIF approach. Second,
the MAE solution was obtained using linearized acoustic equations in the outer region,
such that only the first terms in the outer expansion used in the current investigation were
considered. In addition, the MAE solution does not account for flow–acoustic interaction
effects. This point will be addressed in more detail in part B of this section. Third, the EIF
solution represents a combination of near-field compressibility and acoustic waves. This
fact is evident by the matching procedure performed between the near-field EIF equations
and the outer region wave equations in the previous section. In contrast, the MAE solution
contains only the acoustic component of pressure. The near-field compressibility effects
were evaluated by solving Eqs. (13a) and (13b) forρ ′. Note that Eq. (13a) does not in-
clude a time derivative ofρ ′, such that the resulting solution does not propagate as acoustic
waves. Significant compressibility effects were seen out toro= 20, accounting for some of
the differences between the EIF and MAE solutions seen in this region.

Relevant flow features and computed acoustic pressure contours for the forced planar
shear layer are shown in Fig. 2. For this flow, the hydrodynamic source terms were com-
puted using an incompressible Navier–Stokes solver [23, 24] at Re= ρ∞1uδ/µ = 250,
whereδ is the shear layer thickness at the inlet given byδ=1u/|∂u1/∂x2|max, and1u is the
velocity difference across the shear layer. The perturbation solution was computed using a
high-speed Mach number (MHS) of 0.50 and a low-speed Mach number (MLS) of 0.25. The
hydrodynamic grid used in the incompressible flow solution extended approximately 500δ

in the x1 direction and 15δ in the x2 direction. This grid had 117,530 points (730× 161)
and was clustered toward the shear layer centerline (x2= 0) with a minimum spacing of
0.04δ. The hydrodynamic inlet velocity was specified using an error function profile given
by u1(x2, t)= (uavg/2) + (1u/2)[erf(x2/σ)], whereuavg is the average of the high- and
low-speed stream velocities. Forcing was applied at the fundamental and first subharmonic
frequencies using sine functions with an amplitude of 0.00021u. This amplitude was just
high enough to get the shear layer to roll up and overcome the dissipation inherent in the
numerical scheme. A low level of forcing was selected to minimize the resulting noise
source at the hydrodynamic inlet, and as a result the hydrodynamie field appears somewhat
diffusive. The acoustic domain was designed such that the computational grid extended
five wavelengths at the subharmonic frequency above and below the hydrodynamic grid. A
uniform grid with 80,571 grid points and a spacing of1xi = 0.145δwas used. This provided
sufficient resolution (approximately 15 grid points) of the pressure field associated with each
subharmonic vortex. The source terms and unsteady components of each incompressible
flow variable used in the acoustic solution were gradually decayed betweenx1/δ = 145 and
x1/δ= 220 using a linear decay function. These variables were also decayed near the inlet to
reduce the effects of forcing on the acoustic solution. Several variations of the downstream
decay (e.g., different decay lengths, location of decay, and exponential decay functions)
were used in computing the acoustic solution. These variations, which were shown to have
no significant effect on the far-field solution, demonstrated that the decay region did not act
as a source of sound. A highly directive acoustic field was predicted with a peak directivity
near 30◦ below the centerline of the shear layer. This acoustic field has been shown [22] to
be in good agreement with results obtained from DNS computations [28].
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FIG. 2. Planar shear layer. (a) Vorticity contours. Contours range between−0.25 and 0.25; dark shading
represents regions of high vorticity, contour lines are inverted to highlight vorticity field (light contour lines
indicate high vorticity). (b) Dilatation field forMHS= 0.50 case. Contour levels range between−3.0× 10−7 and
3.0× 10−7 at intervals of 3.0× 10−8.

B. Comparison ofO(ε2)-,O(ε4)-, and Baseline Composite EIF Equations

Equations (29a) and (29b) are fairly complex and require the computation of gradients
for several terms and/or groups of terms. This complexity is due to the inclusion of the high-
orderε terms, which are required to extend the approach to moderate Mach numbers. Many
flows of practical interest, however, are characterized by low Mach numbers. For such flows,
low-order equations, such asO(ε2) andO(ε4), may provide sufficiently accurate solutions
at significantly reduced computational cost and code complexity. To investigate this, the
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O(ε2)- andO(ε4)-composite EIF equations have been applied to the spinning vortex pair
and shear layer problems described above.

The acoustic fields for the spinning vortex pair have been computed at three different
rotating Mach numbers,Mr = 0.05,Mr = 0.10, andMr = 0.20, which correspond to vortex
circulations of0= 0.628,0= 1.257, and0= 2.513, respectively. The peak Mach numbers
for these cases are 0.125, 0.25, and 0.50. Figure 3 shows the difference between the acoustic
density fields computed with the baseline andO(ε2)-equations for eachMr . The difference
range (i.e., the difference in1ρ ′, where1ρ ′ = ρ ′max−ρ ′min) listed on these figures excludes
the range associated with the small circular region of radius 16ro, centered in the compu-
tational domain. The relatively large differences in this region are believed to be due to
different resolution of the near-field compressibility of the flow (e.g., the near-field density

FIG. 3. Spinning vortex pair—difference between computed density fields using the baseline andε2-equations.
(a) Mr = 0.05. 20 contour levels are shown between−1.5× 10−6 and 1.5× 10−6; a circle with radius 16ro is
shown centered on the origin. (b)Mr = 0.10. 20 contour levels are shown between−5.0× 10−6 and 5.0× 10−6.
(c) Mr = 0.20. 20 contour levels are shown between−1.5× 10−3 and 1.5× 10−3.
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resolved by theO(ε2)-equations includes only the first term in the Janzen–Rayleigh expan-
sion of the inner region density, whereas that resolved by theO(ε4)-equations includes the
first and second terms). As a result, this error does not appear to propagate out to the far
field. A measure of relative error can be assessed by considering the ratio of the difference
range to the acoustic density field range computed using the baseline equations. This is
shown below for computing the relative error associated with theO(ε2)-equations,

Relative Error= (1ρ ′)ε2-Eqs. − (1ρ ′)Baseline Eqs.

(1ρ ′)Baseline Eqs.
. (33)

The relative errors have been determined for eachMr and are included in Fig. 3 for both
theO(ε2)- andO(ε4)-solutions (excluding the difference range associated with the circular
region described above). The solution obtained with theO(ε4)-equations is effectively the
same as the solution obtained with the baseline equations. The relative error associated with
theO(ε2)-equations is seen to increase with increasing Mach number. ForMr = 0.05, the
relative error was less than 5%, forMr = 0.10, the relative error was approximately 10%,
and for Mr = 0.20, the relative error was over 25%. Line plots of the difference between
the baseline,O(ε2)-, andO(ε4)-solutions are shown in Fig. 4 along the 45◦ line from the
origin to the upper right-hand side of the computational domain. The range shown in these
plots excludes the difference range associated withr < 16ro, consistent with Fig. 3. For
comparison purposes, Figs. 4a, 4b, and 4c also include the baseline solution multiplied
by scale factors of 0.035, 0.10, and 0.25 forMr = 0.05, 0.10, and 0.20, respectively. These

FIG. 4. Spinning vortex pair—differences between solutions of perturbation density alongx1= x2. Differences
are between the solution obtained with the baseline equations and the solutions obtained using theε2- andε4-
equations. (a)Mr = 0.05. (b)Mr = 0.10. (c)Mr = 0.20.
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FIG. 4—Continued

factors were selected so that the scaled baseline solutions approximately match the amplitude
of the difference range of each computed solution over most of the acoustic domain. This
provides another measure of the error associated with theO(ε2)- andO(ε4)-equations
relative to the baseline EIF equations and verifies that the relatively large differences seen
near the origin do not propagate out to the far field.
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FIG. 5. Planar shear layer—difference between computed density fields using the baseline andε2-equations.
(a) MHS= 0.50. (b)MHS= 0.25. The square inset in Fig. (5b) is the size of the entire computational domain shown
in Fig. (5a).

For the planar shear layer, the acoustic fields have been computed with theO(ε2)-,
O(ε4)-, and baseline composite EIF equations using two-high-speed stream Mach num-
bers,MHS= 0.50 andMHS= 0.25. In each of these cases, the ratio of low- to high-speed
stream Mach numbers was 0.5. Similar to the spinning vortex pair, results using theO(ε4)-
equations are virtually identical to those using the baseline EIF equations. Figure 5 shows
the difference between solutions obtained with the baseline andO(ε2)-equations for the
MHS= 0.25 andMHS= 0.50 cases. These differences exclude the region of significant non-
zero hydrodynamic gradients (i.e., the region excluded in the Fig. 2b acoustic field) for the
same reason that the small circular region is excluded in the evaluation of the spinning vortex
pair solutions. Consistent with the spinning vortex pair simulations, the relative error with
theO(ε2)-equations is higher for the higher Mach number case. ForMHS= 0.25, the relative
error was approximately 16%, and forMHS= 0.50 this error was approximately 18%.

In contrast to the spinning vortex pair problem, the relative error does not provide the
best indication of the performance of theO(ε2)- andO(ε4)-equations as a function of Mach
number for the shear layer problem. This is because the amplitude of the acoustic waves at
the far field varies significantly withθ , whereθ is the angle measured counter-clockwise
from the centerline of the shear layer. Therefore, the relative error would not necessarily
reflect significant sound pressure level (SPL) differences for low-amplitude waves. A better
indication of the performance of theO(ε2)-equations for this flow is provided by comparing
the computed far-field directivity patterns. Figure 6 shows the directivity patterns using the
baseline andO(ε2)-equations for both Mach number cases. For the lower Mach number
case, little difference (i.e., less than 2 dB) is seen in the solutions computed using the
baseline andO(ε2)-equations over the entire range ofθ . For the higher Mach number case,
the basic character of the directivity pattern obtained with the baseline equations was also
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FIG. 6. Planar shear layer—predicted far-field directivity pattern (normalized sound pressure level, dB) ob-
tained using the baseline andε2-equations. (a)MHS= 0.25. (b)MHS= 0.50.

obtained with theO(ε2)-equations as shown in Fig. 6b. However, significant differences
are seen in the high-speed stream side, in particular for waves that propagate upstream into
theu0i flow field (i.e., forθ >60◦).

TheO(ε4)-equations are not significantly simplified as compared to the baseline equa-
tions. Because of this, there is little computational advantage in using theO(ε4)-equations
instead of the baseline equations. For example, use of theO(ε4)-equations reduces the
computational time by less than 5%. In contrast, theO(ε2)-equations are considerably
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simplified relative to the baseline equations and result in a 30% reduction in computational
time. Furthermore, theO(ε2)-equations are significantly easier to implement into a numer-
ical solver. For low Mach number flows, the baseline equations have been shown to offer
little improvement over theO(ε2)-equations in predicting far-field noise levels and direc-
tivity patterns. Because of this, and because of the benefits associated with the simplified
form of theO(ε2)-equations, these equations are recommended for flows with peak Mach
numbers less than approximately 0.25.

C. Comparison with Acoustic Analogies

In the previous section, the effects of truncating the EIF equations to lower orders ofε

were computationally evaluated using two unsteady flow problems. Some of the benefits
of the EIF approach can be demonstrated by comparing theO(ε2)-, O(ε4)-, and baseline
composite EIF equations with the acoustic analogies described previously in this paper.
To that end, two modified versions of Eqs. (29) were evaluated. The first modification did
not include the flow–acoustic interaction terms or the∂(ρ1u0i u0 j )/∂xj term. The acoustic
analogy formulation corresponding to this modification is Lighthill’s equation, Eq. (1), with
Ti j = ρ0u0i u0 j . The second modification consisted of Eqs. (29) without the flow–acoustic
interaction terms. Thus, the acoustic analogy formulation corresponding to this modifica-
tion includes the first compressible correction term (Term I) of Eq. (32). Figure 7 shows the
difference between the baseline solution and the solutions obtained with these two modifi-
cations for the three spinning vortex pair cases considered earlier. For reference, this figure
includes the difference between the baseline andO(ε2)-solutions. The first compressible

FIG. 7. Spinning vortex pair—differences between solutions of perturbation density alongx1= x2. Differences
are between the solution obtained with the baseline equations and the solutions obtained using theε2-, Mod. 1,
and Mod. 2 equations. (a)Mr = 0.05. (b)Mr = 0.10. (c)Mr = 0.20.
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FIG. 7—Continued

correction term is seen to have little effect on the solution for all threeMr cases considered.
For theMr = 0.05 case, theO(ε2)-solution provides little improvement in error relative
to the solution obtained with Lighthill’s incompressible source term. However, significant
improvement is evident for the higherMr cases (e.g., atMr = 0.20 the error is reduced by
a factor of 2).
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FIG. 8. Planar shear layer—predicted far-field directivity pattern (normalized sound pressure level, dB) ob-
tained using theε2-, Mod. 1, and Mod. 2 equations. (a)MHS = 0.25. (b)MHS = 0.50.

The first and second modified forms of Eqs. (29) were also applied to the shear layer prob-
lem. Figure 8 shows the directivity patterns for theMHS= 0.50 and 0.25 cases using these
modified equations. In addition, this figure shows the results obtained using the baseline EIF
equations. Large errors relative to the baseline results are seen using the modified equations
and are attributed to the neglect of the flow–acoustic interaction terms. For this flow, which
has a large region with significant hydrodynamic velocities and velocity gradients (i.e., a
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large3 as described in Section II-E, the flow–acoustic interaction terms play an important
role in the convection and refraction of sound. Acoustic analogies that do not include these
terms cannot capture the superdirective character of the acoustic field predicted with DNS
and the EIF approach. Of interest is that the second modified equation (i.e., the equation
that includes the effects of Term I of Eq. (32)) does not improve the comparison with
the baseline EIF equation solution. One explanation for this is that this term is balanced,
at least in part, by the flow–acoustic interaction terms that have the same order ofε as
Term I.

IV. CONCLUSIONS

A Janzen–Rayleigh expansion of the compressible flow equations has been performed
that, to lowest order, describes the low Mach number approximation of a thermodynamic
field. Results of the expansion, in conjunction with an additive composition matching pro-
cedure, have been used to develop the EIF equations, which have been shown to include an
infinite power series inM2. Relations between the hydrodynamic density and hydrodynamic
pressure fields, and between the acoustic pressure, acoustic density, and hydrodynamic den-
sity fields, are essential elements in the EIF approach. These relations have been established
using the Janzen–Rayleigh expansion.

Two low-order approximations of the baseline EIF equations have been developed. These
equations, referred to as theO(ε2)- andO(ε4)-composite EIF equations, include terms up to
orderM2 andM4, respectively. TheO(ε2)-,O(ε4)-, and baseline composite EIF equations
have been tested using two unsteady flow problems, the spinning vortex pair and a forced
planar shear layer. The error associated with the use of the lower-order approximations
increases with the Mach number. However, both of these approximations have been shown
to yield adequate acoustic predictions, as long as the Mach number is below approximately
0.25. TheO(ε2)-equations require approximately 30% less CPU time than the baseline
equations, are much simpler to program, and are therefore recommended for low Mach
number (M < 0.25) simulations.

Acoustic analogy formulations of each of the equations (i.e.,O(ε2)-,O(ε4)-, and baseline
equations) have also been developed. Each of these formulations includes flow–acoustic
interaction terms, which cannot be accounted for using the standard acoustic analogy so-
lution approach. Without these terms, theO(ε2)-equation closely resembles Lighthill’s
acoustic analogy, along with an additional term that is identical to one of the compressibil-
ity correction terms due to Ristorcelli. Numerical simulations have shown that without the
flow–acoustic interaction terms, the acoustic analogies are not able to predict the highly
directional character of subsonic shear layers.

APPENDIX: NOMENCLATURE

c local speed of sound
Co ambient speed of sound
cp specific heat
Fi body force per unit volume
k∞ reference thermal conductivity
` inner region length scale
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L∞ reference length scale
M Mach number
Mr rotating Mach number
p pressure
p̄n nth term in inner regionp expansion
pn ε2n p̄n

p1 hydrodynamic pressure
p′ perturbation pressure,p′ =∑n

m=2ε
2m p̄m

p̃1 time-averaged hydrodynamic pressure
Pr Prandtl number
qi heat flux vector,∂(kT)/∂xi

qni ∂(kTn)/∂xi

q′′′ heat release per unit volume
ro rotation radius, vortex pair
Re Reynolds number
t inner region time
t̂ outer region time
T temperature
T̄n nth term in inner regionT expansion
Tn ε2nT̄n

T∞ reference temperature
Ti j Lighthill’s stress tensor
T (n)

i j orderM2n component ofTi j

ui velocity vector component ini -direction
ūni nth term in inner regionui expansion
uni ε2nūni

u′i perturbation velocity vector,u′i =
∑n

m=1ε
2mūmi

u∞ reference velocity
1u streamwise velocity difference across shear layer
uavg average streamwise velocity in shear layer
xi inner region Cartesian coordinates
x̂i outer region Cartesian coordinates
δ shear layer thickness
δi j Kronecker delta
ε perturbation parameter (ε2 = γM2)
8 dissipation function
γ specific heat ratio
0 circulation
λ acoustic wavelength
3 characteristic length of acoustic source region extent
µ dynamic viscosity
µ∞ reference dynamic viscosity
5n pressure–density relation term of orderε2n

ρ density
ρ̄n nth term in inner regionρ expansion
ρn ε2nρ̄n
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ρ1 hydrodynamic density
ρ ′ perturbation density,ρ ′ =∑n

m=2ε
2mρ̄m

ρ∞ reference density
τi j viscous stress tensor
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