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Computational aeroacoustics equations are developed using a Janzen—Rayleigh
expansion of the compressible flow equations. Separate expansions are applied to an
inner region characterized to lowest order by an incompressible flow field and an outer
region characterized by propagating acoustic waves. Several perturbation equation
sets are developed in the inner and outer regions by truncating the expanded equations
using different orders in the perturbation varialewheres? is proportional to the
square of the Mach number characterizing the flow. Composite equation sets are con-
structed by matching the equations governing the inner and outer regions. The
highest-order perturbation continuity and momentum equations include an infinite
series ire? and are shown to be identical to the equations used in the expansion about
incompressible flow approach. As such, the perturbation analysis is used to interpret
the physical meaning of the perturbation variables and to highlight the assumptions
inherentin this approach. Differences between numerical solutions obtained with the
composite equation sets are evaluated for two unsteady flow problems. The lowest-
order perturbation equation set is shown to yield adequate acoustic predictions for
low Mach number flows. This equation set is considerably simpler to implement into
a numerical solver and reduces the required CPU time relative to the highest-order
equation set. © 2000 Academic Press

I. INTRODUCTION

The problem of predicting the sound generated by an unsteady flow field is one
significant practical interest. Computational aeroacoustics (CAA), which encompasse:
application of computational methods to this problem, is emerging as a viable field du
advances in the speed and memory of high-performance computers. Despite these ad\
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there are several issues, distinct from those of the more mature field of computational 1
dynamics (CFD), that have limited the widespread application of CAA. These issues h
been well documented for direct simulation (i.e., simultaneous computation of the near
far fields) of low Mach number (M) flows and are due, in part, to the disparity in scal
associated with the near and far fields [1-3]. The near field has length scales that charac
the vortical flow, such as shear layer thickness or turbulent eddy size. These characte
length scales are extremely small for moderate-to-high Reynolds number flows. The far:
has length scales associated with the acoustic waves. For low frequencies and low |
numbers, the far-field length scales can be many orders of magnitude larger than t
characterizing the vortical flow. This wide variation in length scales directly affects the c
of direct simulation. A small near-field length scale requires the use of a small time st
whereas a large far-field length scale requires the use of a large computational domain.
is alsolarge disparity in the amplitude of the near-field and far-field oscillations (e.g., the r:
of far-field to near-field kinetic energy fluctuations is on the ordeviéj [4]. Simultaneous
resolution of these fields requires careful numerical treatment, such as the use of f
order numerical algorithms to minimize dispersion and dissipation error, and non-reflec
boundary conditions to reduce non-physical reflection from the computational boundal
The acoustic analogy provides a simplified approach that avoids the issues assoc
with direct simulation of low Mach number flow generated sound. In this approach, 1
governing equations are cast in the form of an inhomogeneous wave equation for a qua
(e.g., density) that becomes an acoustic fluctuation (e.g., acoustic density) in the far f
The inhomogeneity is generally considered the “source” of sound, which is non-zerc
the near field. Several different forms of the acoustic analogy have been proposed to €
provide different physical interpretation of the sources of sound or simplify the terms u:
to represent these sources [5—7]. For Lighthill's acoustic analogy [5], the wave equa
takes the non-dimensional form
2p 1 8% 32T;;

at2 M2 9% 9% X 0Xj

)

with

Tjj =pUin+5ij<p—N1|20> _Riefija )
wherep is the densityy;, is the velocity vectorp is the pressurey; is the viscous stress
tensor,t is time, x; are the Cartesian coordinates, and Re is the Reynolds num@gr. If
is known, the solution to Eq. (1) can be determined using Green'’s functions [8]. For |
Mach number flows, a common approximation is to assiijne- T”(O), WhereTiJ(O) is the
stress tensor formed using the incompressible flow field (Il'-rf&,z Poolgi Uoj, Wherep,
is the ambient thermodynamic density, argis the incompressible velocity vector). The
assumption to neglect the compressible portiopwiu; has been analyzed by Crow [9],

who considered the following expansion of the right-hand side of Eq. (1),

02Ty 92
8Xi8Xj - 3Xian

(T + MPTP ), )

wherep has been non-dimensionalizeddy. The second-order terivi 2Ti}2) is of orderM?
smaller thanTiJ(O) and is required to make the left- and right-hand sides of Eq. (1) consist
sinced?p/at? is of the same order. Despite this, Crow concluded that the approximati
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Tij =~ Tijo) is adequate for low Mach number, “uncomplicated” flows that do not conta
extensive source regions. However, for flows with moderate-to-high Mach numbers,
for flows with acoustic source regions of the same order as or larger than the acol
wavelength, the ternm 2Ti]§2) is important to the convection, refraction, and generatio
of the acoustic field. Modifications to Lighthill’s acoustic analogy have been proposec
order to account for such effects. Lilley’s [10] equation is one such modification that ce
the wave operator in a form that reduces to that of the moving-medium wave equatior
this way, Lilley’s equation accounts for the effects of convection and refraction. A gene
solution of Lilley’s equation cannot be obtained through the use of Green’s functions. S
solutions will typically require the use of numerical methods and are significantly mc
expensive to obtain relative to the solution of Eq. (1). More recently, Ristorcelli [11] h
developed a modification to Lighthill’s acoustic analogy in an attempt to account for sot
generation due to compressible portiongufu; (i.e., theMzTi}z) source term of Eq. (3)).
The M2Ti§2) source terms are determined directly from the incompressible flow field and
not account for the effects of the mean flow on convecting and refracting the acoustic fi

Hardin and Pope [12] have proposed a computational aeroacoustics technique that,
ilar to the acoustic analogy approach, avoids some of the issues and difficulties assoc
with direct simulation. This technique, called expansion about incompressible flow (El
is applicable to subsonic flows and uses acoustic source terms determined from th
lution of the equations governing incompressible flow. In the EIF approach the veloc
vector and pressure are split into incompressible and perturbation quantitesg + u;
and p= p;1+ p’, whereu; is the perturbation velocity vectop; is the hydrodynamic
pressure, ang’ is the perturbation pressure. In addition, the density is split accordi
to p = po+ p1+ p’, Wherepy is the thermodynamic density, apd is the hydrodynamic
density, ando’ is the perturbation density. The equations governing the acoustic field
developed by first substituting the split variables into the compressible flow equations,
then subtracting the incompressible flow equations. The resulting equations are

/

ap 1 %

0
— 4+ — i "Ugi] = ——— — Ug 4a
at+axi[(po+pl+p).+p o] ot~ Y0y (4a)
8 ! / i a / / !y
§[(Po+,01+'0 Ui + p'Uoi] + g[(PoJr 1) (Uoi U} + Uoj Ui + Uju’)]
j
9 , , op’ d(p1Uoi)  d(p1UgiUoj)
— [0 (Ugi Ugi + Ugi U -+ UgiU + u/U, o’ _ _ (b
+ 3Xj [;0( 0i Uoj + Uoi j + Uoj Uj + U J)] + % ot 3Xj ( )

In the development of Eq. (4b), the effect of viscous action on the acoustic variables
been neglected. These equations have beenwritten in such away that only the acoustic
terms (i.e., terms that are constructed entirely from the incompressible flow solution) ap|
on the right-hand side of each equation. By splitting the flow field into incompressible
perturbation parts, and by neglecting the viscous terms in the acoustic equation, the
approach has been designed with the intent of accommodating the different discretiz:
requirements resulting from the disparate length scales associated with low Mach nur
flows. The small vortical length scales are resolved by solving the incompressible f
equations on a hydrodynamic grid, and the large acoustic length scales are resolve
solving Egs. (4a) and (4b) on a separate acoustic grid. In addition, the EIF approach al
for specification of different boundary condition types and locations for the near-field
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far-field quantities. One limitation of this approach is that it does not account for the effe
of back scatter (i.e., acoustic feedback onto the underlying flow field).

Equations of state relatingy to p;, andp’ to p” andp;, complete the EIF approach. The
first of these relations is given by [12]

1 ~
p1=—(P1— P1), (4c)
CO

where
t
~ 1
P1=t|l[20f/p1(xi7t)dt~
0

The rationale for subtracting out the time-averaged pres§yr@ computingpo; is that the
time-averaged pressure is primarily the result of non-isentropic effects and that these ef
are slow relative to an acoustic time scale. For the second equation of state two diffe
forms have been proposed [12]:

p' = c(p’ + p1) (4d)
and
, _I_ + '\ VY
p= po(pop%) ~ pu. (4e)

Equation (4d) has been used for a flow field with significant viscous effects [13], wher
Eq. (4e) has been used for inviscid flows [12, 14].

As described above, the EIF equations were developed by simply splitting the flow fi
into thermodynamic, incompressible, and acoustic parts. Because of this simple decor
sition, the benefits and limitations of the approach, the inherent assumptions of the resu
set of equations, and the significance of the perturbation quantities in various region
the flow are not clearly defined. In addition, Egs. (4c) and (4d) were developed usin
heuristic approach. In the present investigation, the EIF continuity and momentum ec
tions are developed using a perturbation analysis. In a consistent fashion, new equa
relating p; to p; and p’ to p’ and p1, are also established. The perturbation analysis us
a Janzen—Rayleigh (i.e., Mach number squared) expansion about the thermodynamic
extending the approach to include flows with significant heat release and/or heat conduc
This analysis will be shown to be valid in an inner region that is characterized to low
order by the incompressible flow equations. Outside this region, the equations transitic
a different set of equations that govern the propagation of acoustic waves. This trans
is associated with the variation in scales associated with the inner and outer flow fie
Composite equations, valid over the entire flow field, are constructed using a techni
analogous to the “additive composition” [15] method. These equations are applied in
numerical solution of the aeroacoustic fields associated with two unsteady flows.

Il. ANALYSIS

The following analysis is performed in five sections, starting with an introduction
the governing equations in Section A. In Section B, a Janzen—Rayleigh expansion of
governing equations is used to develop a sequence of perturbation equation sets by eqt
terms of like order in the perturbation variable. In Sections C and D, a sequence of near-
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EIF equation sets and pressure—density relations are constructed from these perturt
equations. In Section E, the equations in Section C are rewritten in a form similar to 1
used in acoustic analogies. In addition, the uniformity of these equations is extendec
to the far field by matching acoustic wave equations with the near-field EIF equatit
using a technique analogous to the additive composition matching method. In Section F
developed equation sets are compared to Lighthill's acoustic analogy. In Section G, s
numerical considerations of these equation sets are discussed.

A. Governing Equations

The generation and propagation of sound due to viscous flow are completely characte
by the compressible continuity, momentum and energy equations, and an equation of s

ap  dpu;
- = 5a
ot * 0Xi (5a)
oui oui 1 dp 1 91
— 4 pu—=—— 4 =" HF 5b
Pt TP T TyMZax T Reax, (56)

1 [ 9T aT 1 1 99 ., (=1 /dp ap (y -1
I = = il i ®
yMZ[" g Tou axi] yMZ[PrReaxi Tt (at Yax )] T Re

(5¢)
p=pT, (5d)

whereT istemperaturds; is the body force per unitvolume, Pris the Prandtl numbeésthe
specific heat ratiod is the viscous dissipation functioq;’ is heat release per unit volume,
and q; is the heat flux vectofg =a(kT)/9x). These equations have been develope
assuming an ideal fluid with constant specific heg} &nd have been non-dimensionalizec
USiNgUeo, Poo> Loo» oos Koy @Nd Ty, Note that the energy equation, Eq. (5c¢), could hav
been simplified by multiplying each side hyM2. However, Eq. (5¢) provides a form
convenient for perturbation analysis as discussed later in this paper.

B. Janzen—Rayleigh Expansion

The Janzen—Rayleigh expansion is an asymptotic perturbation analysis method tha
been previously used to evaluate the effects of compressibility for certain flows [15]. Itis
formed by expanding each of the non-dimensionalized independent variables of Egs. (
(5d) in a power series in, wheres? =y M2,

P=pote’pr+e*Po+e®Pat - =potpitPtpatoe,
p=potepr+etp2+e®pat - =potprtpatpsto, ©)
Ui = Ug + £2Uy + %0 + €%U3 4 -+ = Ugi 4 Uy + Uz + Uz + -+,
T=To+&T1+& T+ T+ =To+ T+ T+ Ts+ -,

wherep; = £2p1, P2 =¢*py, etc. As seen in these expansions, the first-order correctior
proportional toy M2, with higher-order corrections using successive powessf. The
basis of the Janzen—Rayleigh expansion is that a series of equations can be develor
substituting Egs. (6) into the governing equations, Egs. (5a)—(5d), and then grouping te
of like orderine. The expansionis valid for arbitrary valueso$o long as is less than unity
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(i.e., the flow is subsonic). With this constraint, the expansion yields a convergent solu
in the near field or inner region of the flow [15]. Substituting Egs. (6) into Egs. (5a)—(5¢
and grouping terms of lowest orderdi.e.,e~2) yields the “zeroth-order” approximation

9Po
— =0 7a
a% (7a)
To 0o 1 9a . (r—Dap
9% - il 7b
PO TPt = Brreax, 4 T T ht (75)
L. S (7¢)
]

whereqqg is constructed using gradients . Grouping terms of ordet yields the “first-
order” approximation

J dpoUgi
900 LoUoi -0 (8a)
ot 0X%;
dUgj dUgj 1 ap1 1 3‘(0”'
S L) BN 8b
po—— + polioj o JM2ax | Re ax, + poFi (8b)
0Ty 0Ty To d0Tp
Po—— + poloi —— + p1—— + (p1Uoi + ,00U1|)—
ot 0X%; ot
1 gy (=1 [op dp1 MZV(V—l)
- M ug ) 4 B T P 8c
PrRe 9x y ot o aXi + Re (8c)
— T,
P1—p1lo . 8d)
Lo

where @y and 1g;; are constructed using gradients wf, anddy is constructed using
gradients ofT;. Grouping terms of ordes? yields the “second-order” approximation

d(poUs) _ dp1 301

=—— 9a
9X%; ot 8X. (92)
d(poUzi) 0 1 9p2 1 oy d(p1Uoi)  d(p1UqiUoj)
—[po(Ugi Uz +Uoju =— —
gt T ax, Potta iy Fuo )l s e ax, at ox;
(9b)
Mo ;1 o 212 4 uaT+(u+u+u)T
Lo ot P1 It PoUoi % pP1Uoi o pP1U1i + poUzi + p2Uoi
1 9%gs  (y—1) [dpz Ip2 Ip1 Ipo) , M%y(y -1
= == u u — 2~ d; (9
PrRe dx; y (zatJr a.+1'a +2'3x.)+ Re 1 (90)
— 11— poT,
P2 —p1l1—p210 T, (@d)

L0

whered®; andry;j are constructed using gradientsugf, andgy; is constructed using gradi-
ents ofT,. The zeroth-order approximation governs the thermodynamic figlghg, To), the
first-order approximation governs the hydrodynamic figdd (1, ugi, T1), and the second-
order approximation governs an? approximation of the perturbation (i.e., compressible
field (p2, p2, U1, T2) for M < 1. Equations (7), (8), (9a), and (9b) represent a closed sy
tem. High values of (assuming < 1) will require higher-order expansions to accurately
characterize the compressibility of the flow field. If one is interested in the temperat
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fluctuations due to the near-field compressibility, or a higher-order approximation of
corresponding density and velocity field, Egs. (9¢) and (9d) and a “third-order” continu
and momentum equation of ordgt must be solved,

9p2  d(poUzi + p1Usi + p2Uoi)
ot 9X%;

=0 (10a)

0 0
a[pOUZi + p1Uzi + p2Uoi] + W[Po(um Uzj + UojUzi + UaiUg;j)]
i

1 9ps 1 dty;
- 9P 20T _ g (q0p
yM?29x  Re dx; (10D)

+ aixj[lol(UOi Ugj + UojUyi) + p2(UoiUoj)] +
This process can be continued, yielding equations accurate tasSyeders®, etc. Bound-
ary conditions for these equations are obtained by substituting Egs. (6) into the compres
flow boundary conditions. Although this yields a mathematically consistent problem, th
is some difficulty in specifying boundary conditions for subsonic flows with moderate Ma
numbers. The expanded form of these boundary conditions requires knowledge of botl
incompressible and perturbation velocity fields. The latter is rarely known in practice.

C. The Near-Field EIF Equations

One of the goals of this investigation is to derive the equations in the EIF approach usi
perturbation technique so as to better understand the underlying assumptions and limite
of this approach. This is accomplished by considering the case of a non-varying therm
namic field (i.e.po = po = To = 1) and by neglecting the viscous terms in all of the equatior
except the lowest remaining order (i.e., the hydrodynamic equations). Under these ass
tions, theO (%) inner region equations are obtained; that is, Egs. (8a) and (8b) become

dUoj
% _o (11a)
BXi
dUgj dUgj 1 3p1 1 3‘170”
0 gy S0 TP 2 F. 11b
ot o dX] yM2 3%  Re dx; h (11b)

These equations are recognized as the incompressible continuity and momentum eque
Simplified forms of the higher-order equations (e.g., Egs. (9) and (10)) could be develc
in a similar fashion. However, to obtain an ord@éor higher approximation of the near-field
compressibility effects with such equations would be computationally cumbersome:
individual terms in the perturbation expansion would have to be solved using a serie
equation sets, each with source terms developed from the solutions of lower-order equa
in the series. A preferable approach would involve the solution of a single equation se
the entire pertubation field up to some ordeginThis would involve summing equation

sets and is greatly aided by defining the perturbation quantities

n
p'=2 " pm (12a)
m=2
n
u=> &My (12b)
m=1

n
p=> "pm. (12¢)
m=2
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where the quantitieg’, u/, p’ represent an order" approximation of the entire density,

velocity, and pressure perturbation fields, respectively. Using the perturbation quant
defined by Egs. (12b) and (12c) with=1, O(£?) inner region equations are obtained
from simplified forms of Egs. (9a) and (9b),

ou _ 9o 0P

= — Ugi 13a

%, at ax (132)
ou; N 9 (Ugi U} + Uoj Uy) 1 9p" _ _9(po) _ 8(p1U0iUoj). (13b)
ot 0Xj y M2 9 at 0Xj

O(e* inner region equations are obtained by combining Egs. (9a) and (9b) with (1
and (10b) and by using=2 in Egs. (12a)—(12c),

002 a , , 9p1 9p1
%P2 ¢ T 1@+ pou + plug] = — L g L 14a
P + % [(1+ pui + p'ugi] T 0 9% (14a)

3 ! / a / / U
&[(1-1‘ pVU; + p'Uai] + g[(l-i‘ p1) (Ugi U] + UojUj) + Ujuj]
j

0 1 oap 9 (p1Uoi 9 (1Uqj Uoj
+W[(p/u0iu0j)]+ P’ 9(piUo)  d(p1loi o,). (14b)
j

yM23x at AX;

The process used in developing these equations can be repeated indefinitely in extel
the order of beyond that of Egs. (14a) and (14b). If the entire series of higher-order eq
tions (i.e., equations with terms of ordet, ¢4, £, 8, etc.) are combined, the “baseline”
inner region equations are obtained,

8p, 0 AT ’ 901 dp1
—[ u; Uoi] = ——— — Ug — 15a
8t+axi[( + p1+ p)HU; + p'Uoi] m 0 3% (15a)
8 / / / 8 / ! U
ﬁ[(1+,01+,0)ui + p'Uoi] + 37[(1+pl)(U0iU,- + Uoj Ui + uju})]
J
0 ’ ’ ’ ’od 1 ap/ a(loluOi) 3(/01U0i qu)
— Uoi Ugi Ugi U Upj U: U u; _— = — — ,
+3Xj[p( 0i Uoj + Uoj ]+ oj Ui + Uj J)]+)/M23Xi ot 3Xj
(15b)

wheren =00 has been used in Eqgs. (12a)-(12c). The dimensional forms of Egs. (1
and (15b) are identical to the EIF acoustic continuity and momentum equations giver
Egs. (4a) and (4b). Since these equations include an infinite power series expansic
M?, they are theoretically applicable to subsonic flows in the near field. Extending 1
applicability of the equations to include the outer, far-field region will be addressed late
this paper.

D. Pressure—Density Relations

The source terms shown on the right-hand side of Egs. (13)—(15) are completely
termined by solution of the incompressible flow equations and Egs. (8c) and (8d).
constantpg and po, these latter equations can be combined into a pressure form of
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energy equation,

Dp: Do 1 dqu  M?y(y — Do
- — — I — 0-

= 16a
Dt 7 Dt _ PrReax Re (163)

In an approach analogous to neglecting the viscous terms in the development of Egs. |
(15), Eq. (16a) can be simplified by neglecting the diffusion terms,

bp Do,

16D
bt 7 Dt (16b)

Equation (16b) can be considered as the simple staterpgest,yp;. The dimensional
form of this relation differs from the relation originally proposed for the EIF equation
Eq. (4c¢), sinceo; is related to the entirg, field, not just the unsteady component of
this field (i.e., the time average of the hydrodynamic pressure is not subtracted out
can be shown that time-averaged pressures are significant, even for isentropic flows
the classical acoustic problem of an oscillating sphere in an inviscid medium). These ti
averaged pressures modify the unsteady source contributions due to unsteady hydrody
velocity fluctuations (e.g., the unsteady contributions duedao; in the source term
d(p1UgiUgj)/dX; that appears in Egs. (13b), (14b), and (15b)). Based on this, Eq. (1
provides a more complete relation betwegmnand p;1. This result is advantageous since
a time-averaged pressure need not be computed prior to computing the perturbation
In addition to avoiding the extra effort associated with computing this pressure, Eq. (1
allows the EIF approach to be used for transient flows (i.e., non-stationary flows in wt
a time-averaged hydrodyamic pressure field is not clearly defined).

Simplified equations fop’ can be established in a similar fashion by combining th
isentropic forms of Egs. (9¢) and (9d) with the higher-order energy equations and equat
of state,

Dp/ Do’ DII,

ot "ot bt

(17)

where I, is ordere” and is a non-linear function gf; and p’ (e.g., TIy= (VT‘l)pf,

Mo =4+ (55 (55503 + (v — Dp1p’, etc.), and the definitions qf andp’ are the same
as the definitions used in Egs. (13)—(15), depending on which equation set is being so
Equation (17) is equivalent to avi2-expansion of the isentropic relatign= p” and can
be solved along material lines assuming a quiescent initial field to yeldy (o’ + I,,).
Numerical testing using the baseline EIF equations, and separately using Egs. (4d) and
has shown that Eq. (17) provides the correct relationship betwegen, andp,, given the

stated assumptions.

E. Extension to the Far Field: The Composite EIF Equations

As described previously by several investigators [9, 16, 17], the aeroacoustic prob
consists of two primary length scales: an “inner” length scale associated with the inc
pressible flow field (e.g., the size of a turbulent eddyand in “outer” length scalej,
associated with propagating acoustic waves. In addition to the inner and outer length sc
Crow [9] describes a third relevant length scale associated with the extent of the source
region. If A is of the same order &as the source region is considered non-compact and c:
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interact with the acoustic field resulting in convection and refraction effects. These effe
will be described in more detail later in this paper. The inner and outer length scales
related to each other such that ~ M, while the relevant velocity scales in the inner anc
outer regions are related ki, ~ Mc,. If the governing equations are non-dimensionalize
using the outer region scales, the process of expanding each of the variables and eqt
like powers ofs results in aifferentset of equations relative to those developed using tr
Janzen—Rayleigh expansion in the inner region. As such, the inner region equation:
not uniformly valid over the entire flow field. The matched asymptotic expansion (MAI
approach [15] is a singular perturbation method that has been used to address this iss
this approach, separate equations are developed for the inner and outer regions. The
region is governed by wave equations fgr ps3, o4, €tc., wherepy is thenth term in an
outer region expansion. The inner region is governed by the equations developed usin
Janzen—Rayleigh expansion. Separate solutions are obtained for the equations gove
the inner and outer regions. The harmonic functions in these separate solutions are
matched in some “intermediate” region based on the orderaifeach function. In this
way, a composite solution can be constructed that is asymptotically valid over the er
flow domain.

The non-uniformity of the equations developed using the Janzen—Rayleigh expansior
be best illustrated by first considering acoustic analogy formulations @ ¢h®-, O(&?)-,
O(e%-, and baseline EIF inner region equations. These formulations, which will also
used to facilitate the development of the composite EIF equations, can be develope
subtracting the time derivative of the perturbation continuity equation from the divergel
of the perturbation momentum equation. Equation (17) can then be used to eliplinate

1 9%p1  9%(uoiUoj)

_ — 18
M2 9x; X 09X 0X; (18)
1 9% 32 3%p1 1 92Ty 9%(p1UoiUoj)
- — —— [(ug U + upiu))] = — — 19
M2 3x0% 9% 0X; [(Uoi U+ Uoj )] a2 T MZaxax 9% 0Xj 19
32,02 1 32/0’ 82 ’ ’ " ’
2 M2axax | %0, [(1+ p1)(UoiUj + Uoju;) + Ujuj + p'Uoi Uoj)
_ _32,01 1 3°Tlg  32(paUoiUoj) (20)
A2 M2axax X OX;
?p" 1 3% 9 N I
iz M2 9%0% - 9% 0%; [(1+P1+P)(U0iuj =+ Uoj U +Uin)+PUOiU0j]
92 1 9°11 82 (p1Ugj Uoj
_ P1 n o (p1Uoi OJ)’ 21)

S at2 T M2ax9% 3% 0X;

where Eqg. (18) has been developed from Egs. (11a) and (11b), and Egs. (19)-(21)
been developed from Eqgs. (13)—(15), respectively. The primed quantities in each of tt
acoustic analogy formulations are consistent with the definitions used in develop
Egs. (13)—(15).

To develop outer region equations analogous to Eqgs. (18)—(21), a separate oute
gion expansion of each dependent variable is constructed. For example, the densi
the outer region is expanded using=1+ A(e")(e202+e%p3+e%pa+ - ) =1+
P2+ ps+pa+ ---, whereA(e") is a gauge function determined through the matching c
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the inner and outer solutions. Similarly, the velocity field is expanded usiagiy + 01 +

05 + Qg + ---. The sequence for velocity in the outer region is shifiedvbyelative to
that in the inner regionl; = Mu,;) since the velocity field has been non-dimensionalize
using the outer region velocity scale. The dimensional form of the first term in the veloc
expansion is equivalent to the hydrodynamic velocigy, This quantity is uniform in the far
field (i.e., its gradients are zero) such that there are no far-field density gradients resu
from Qg . This is consistent with the results of previous MAE investigations [17] in whic
the sequence for the higher-order density terms in the outer region has been shown
shifted bys? relative to that of the inner region (i.e\(¢") = 2, such that the second term
in the outer expansion of densitys, is ordere* in the inner region). Using this result,
we can construct an outer region acoustic analogy equation analogous to the inner re
O(s?)-equation (Eq. (19)) as

3%p2 B 3%p2  9%(00i01j 4 Gai0oj)
otz 9% 0% 0% 0%; '

(22)

In Eqg. (22), the independent variablés,andt have been non-dimensionalized using the
outer length and velocity scales. This equation can be rewritten using the inner-reg
dependent variables as @s*)-equation,

32p2 _ 3202 _ M232(U0iU1j -+ Uz Uoj)
a2 9% 0%, 9%, 0%

—0. (23)

As the relevant length and velocity scales transition f@() to O(1), Eq. (19) transitions
to Eg. (23). These equations are similar to the inner and outer equations used by (
in his MAE analysis. By comparing the inner and outer region equations, it can be s
that Eq. (19) is not uniformly valid over the entire flow field. The teifp,/9t? has been
excluded in Eq. (19), whereas the entire right-hand side of Eq. (19) has been exclude
Eqg. (23). These terms are ultimately responsible for the proper matching of the inner
outer solutions. If the analysis is not carried further than the orderesolved by Egs. (19)
and (23), then ordes* terms can be added to ti(¢?) inner region equation without
affecting the accuracy of this equation,

?p 1 9% 32 3201 1 9%Ms  3%(p1UoiUoj)

— — — — — —— [(ugUu; +ugiu)] = — —
o2 M2 0x0% axiax,-[( ol Ui Wl = = 2 ax o 3% 0
(24)

The development of Eq. (24) is similar to the additive composition method described
Van Dyke [15]. In this method, the composite expansion is constructed by summing
inner and outer solutions. This sum is then corrected by subtracting the part that tl
solutions have in common. In the development of Eq. (24), this corresponds to subtrac
the quantities

1 2 7 2
— M2 a°p" /90X 0X; and —0“(Ugi Ugj + Uz Ugj)/9X; 3X;

from the sum of Egs. (19) and (23). The principal difference between the additive com
sition method and that used in the current investigation is that the equations, as oppos
the corresponding solutions, have been matched.
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The process used in developing Eq. (24) can also be used to develop composite forr
Egs. (20) and (21),

32p/ 1 82,0/ 92

ot2 M2 9x; 9% 0% 0X;

[(1+ p1)(Uoi U]} + UojUj) + Ujuj + p'Ugi Uoj]

__82,01 1 3°Tls  9%(p1UoiUoj)
S At2 T M2axax X OX;

(25)

82,0/ 1 82,0/ 92

ot2 M2 9x; dX; 0X; 0X;

32p1 1 92T 3%(p1UoiUoj)
= — — ) 26
ot2 + M2 9x; dX; + 0X; 0X; (26)

[(L+ p1+ p")(Uoi U] + Uoju; + Uiu’}) + p"Uoi Uoj]

Equations (24)—(26) are composite equations with the same inner region oreer
accuracy as Eqgs. (19)—(21). The source terms in these equations are identical to each
since they are of order. Thus, differences between the acoustic analogy formulations
theO(?)-, O(¢%-, and baseline composite EIF equations are only seen in the flow—acou
interaction terms (i.e., the third term on the left-hand side of each equation). The solu
of Egs. (24)—(26) can be loosely considered as a matched singular perturbation solu
using the nomenclature of Refs. [9, 16, 17], since the actual matching is performed on
equations as opposed to the solutions.

A procedure similar to that used to develop Egs. (24)—-(26) can be used to deve
composite forms of the continuity and momentum equations. This involves the additior
time derivatives of ordes"*2 density terms to thé(¢") inner region continuity equation,
as shown below:

O(¢?) Composite EIF Equation®(e?) Inner Region((¢*) Outer Region

dp’ aui dp1 dp1
SRR e e T 27a
ot T ax, at  Cax (273)
au;  9(Uoi U/j + Ugju;) 1 ap _ _(8,01U0i) _ d(p1Uoi Uoj) (27b)
at 3X] yM23x at axy
O(¢* Composite EIF Equation®(s*) Inner Region((¢®) Outer Region
" 9 dp1 dp1
—[ u "Ugi] = ——= — Ugi — 28a
at + a%; [(1+ pU; + p'Uoi] PT: Oi % ( )
8 / / 8 / / /"
a[(l-i- pDU; + p'Uoi] + W[(l—i_ p1)(Ugi Uj + Uoj Uj) + Ujuj]
|
., 1 op d(p1Ugi)  d(p1lgiUoj)
— [0 Ugi Uoj —_— == — . 28b
Ty P Yatoill + U g at ox (280)

Baseline Composite EIF Equatio@¥e™) Inner Region((¢*°) Outer Region

ap" 0 , dp1 dp1
—+ —[Q1 u U] = ——= — Ug — 29a
8t+8Xi[( + p1+ p)HU; + p'Ugi] m 0 9% (292)
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d , d ,
St L+ o1+ Ui + p'Ua] + a_x,-[(l + p1) (Uoi U 4 Uoj Ui + uju))]

1 9p __ 9(p1la) _ 3(paUoiloj)

yM2ax; at 9Xj
(29b)

d / /
+ a_xj[,o/(UOi Uoj + Ugi U + Ugj ul + U U/j )] +

Note that the form of the inner region and composite equations are identical ot
and baseline cases. Although the form is identical, the definitiphuded in the composite
equations provides the correct interpretatiom0in the outer region.

Even though the baseline EIF equations can be constructed to include an infinite pc
series ine, solutions obtained with these equations can only be considered approxim
The approximation stems from the fact that the outer region equations are not matched
the O(¢%)-inner region equations. For example, if the procedure used to develop Egs. (2
(26) is followed in matching Egs. (18) and (23), the following composite equations can
developed:

0O(£°%) Composite Equation® (%) Inner Region((¢2) Outer region

dp’ AU

2 _0 30a

ot + 8Xi ( )
dUgj dUgj 1 a(p1+ p/) 1 3T0ij

— 4+ Wwy—=——+ ——+F. 30b

at Uiy YMZ ox T Reax; (300)

Equations (30a) and (30b) have been used in low Mach number acoustic simulation
Reitsma [18], who referred to them as the finite compressibility equations. Note that
acoustic field is coupled to the incompressible field suchuhais no longer solenoidal.
As a result,p’ consists of a more extensive density field than implied by Eq. (23); i.¢
it inherently includeso;. These equations highlight an approximation implicit in the us
of Egs. (24)—(26): The perturbation field has no interaction with the incompressible fl
equations (i.e., acoustic back scatter effects are neglected). Therefore, the EIF equze
should only be used to simulate aeroacoustic fields when these effects are negligible.
that this is also a limitation of the MAE approach.

F. Comparison with Lighthill’'s Acoustic Analogy

The acoustic analogy formulations given by Egs. (24)—(26) can be written ina formm
consistent with Lighthill's acoustic analogy, Eg. (1), by using Eq. (18) and the relati
p =1+ p1+ p’. This is performed below for Eq. (26):

#p 1 3% 9 : L

— ———— — ———[p(Ug U, + Ugj Ui + Ui U’ Ugi Ugj

atz M2 aXi 8Xi 8X|8XJ [10( Oi i + 0j Y + i ]) + P Uoi 0]]
1 9%Ms  9%(Ugiloj)  9%p1(UgiUoj)

_1 31
M?2 X 0%; 3Xi3Xj 3Xian ( )

The most significant difference between this equation and Eq. (1) is that flow—acou
interaction terms have been separated from the sound generation process. Separat
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these terms is strictly dictated by the perturbation analysis. This contrasts with the sc
what ad hoc separation of these terms in other approaches such as in the developm
Lilley’s equation. The first term on the right-hand side of Eq. (31)M?)8%I1,./dx; 3%; ),

is equivalent to thé;; (p — (1/M 2) p) contribution in the Eq. (1) source term. The last ter
on the right-hand side of Eqg. (31), which includes the hydrodynamic denpsityig similar

to Term | of the following compressible “correctionT;f) posed by Ristorcelli [11]:

32T 82p1ugiUoj 3 D
o S0 5 % (g —2t). (32)
9% 0X; 0X; 0X; 0X; Dt

Term| Termll

The second compressible correction term, Term Il, was derived from the irrotational cc
ponent of the fluid—acoustic interaction term (i.e., the third term on the left-hand side
Eqg. (31)) in an attempt to account for convection and refraction effects. The effects
the flow-acoustic interaction terms in the composite EIF equations, as well as the
compressible correction term (Term | in Eq. (32)) are evaluated under Numerical Rest

G. Resolution of Disparate Acoustic and Convective Length Scales:
Numerical Considerations

One of the advantages of the EIF approach cited in the Introduction is that the techni
accommodates the disparate length scales (i.e., acoustic and convective) associate(
low Mach number aerodynamically generated sound. The smallest convective length s
are resolved on a hydrodynamic grid, while the acoustic length scales are resolved
separate acoustic grid. Unfortunately, the hydrodynamic and acoustic grid spacing req
ments are not independent from one another since the acoustic grid must accurately re
the relevant convective length scales characterizing the source terms associated wit
acoustic wavelengths of interest. For some problems this would require that the acot
grid spacing be the same as or similar to that used in the hydrodynamic grid. However
many flows the smallest scale hydrodynamic fluctuations are negligible contributors to
overall radiated sound field, even though these scales may be important to the develop
of the hydrodynamic flow field. For such flows, it may be possible to use an acoustic ¢
with coarser spacing relative to that used in the hydrodynamic grid.

Although the small-scale hydrodynamic fluctuations may be physically unimportant
the overall radiated sound, the numerical interpolation of these small scales from a
hydrodynamic grid onto a coarse acoustic grid could result in errors in the magnitude
distribution of the acoustic source field. One approach used in the current investiga
to help reduce such errors is to construct the acoustic source terms with their assoc
gradients on the hydrodynamic grid and to then interpolate these terms onto the aco
grid. This reduces the discretization error relative to the alternate approach of interpola
the incompressible flow primitive variables onto the acoustic grid and computing the sot
terms using the same level of discretization provided by the acoustic grid spacing. Aliac
error associated with using different grid resolutions in the hydrodynamic and acou
solutions depends on the magnitude of the acoustic sources arising from hydrodyn:
scales that are not resolved by the acoustic grid. For some problems, such as the <
generation and radiation due to fine grain turbulence, this error may be difficult to ass
and low-pass filtering of the acoustic source field may ultimately be required before 1
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field is interpolated onto the acoustic grid. In the current investigation (see Section |
the simulated flow fields were resolved using both simple analytical models and dissipz
numerical methods such that the resulting hydrodynamic fields are not characterized
large range in wavenumbers. The acoustic grids used in these simulations were desigr
resolve this entire range. This reduced interpolation errors to acceptable levels as confi
by a grid refinement study.

IIl. NUMERICAL RESULTS

A. Baseline Composite EIF Equations

The baseline composite EIF equations, Egs. (29), along with the appropriate press
density relations, have been implemented into a CAA solver using a second-o
MacCormack [19] scheme with a generalized body-fitted coordinate system. Radia
to the far field is treated using a perfectly matched layer [20, 21] (PML) non-reflecti
boundary condition. The source terms that appear in the composite EIF equations are
puted on the grid used for the incompressible flow solution and interpolated in space
the acoustic grid using bilinear interpolation functions. Previous grid refinement stuc
[22] showed that 20 points per wavelength is required with the MacCormack scheme
this paper, a minimum of 25 points per wavelength is used in all of the reported simt
tions. The incompressible Navier—Stokes flow solver [23, 24] used in this investigatiol
finite difference based (central spatial differencing and full non-orthogonal viscous ter
and uses a Briley—MacDonald linearized block, alternating direction implicit scheme. T
governing equations are cast in primitive variable form in curvilinear coordinates, usin
pseudo-compressibility term in the continuity equation to efficiently link the updates of 1
velocity and pressure fields. Time-accurate solutions are obtained with the incompres
flow solver using a subiteration approach [25], which extends the pseudo-compressik
method to time-accurate incompressible flows by subiterating each physical time ste
drive the divergence of velocity to zero.

The CAA solver has been applied to several fundamental problems including so
generated due to a spinning vortex pair and a forced planar shear layer [22]. The basic
figuration for the spinning vortex pair is shown in Fig. 1. The vortices have a characteri:
rotating Mach number defined & = r,w/co, Wherer, is the radius at which the vortices
rotate about some origin, aadis the angular velocity of this rotation. The angular velocity
is related ta', and the vortex circulatiofl”) by w = I'/4xr 2. For the spinning vortex pair
problem, the source terms used in the EIF equations were determined analytically fron
inner (hydrodynamic) portion of an MAE solution [26]. An acoustic solution was obtain
on a rectangular domain using a uniform grid with 78,961 uniformly spaced grid poil
(Ax = 2r,). The acoustic solution, which is shown in Figs. 1b and 1c, was computed for
periods (i.e., 10 revolutions of the vortex pair) usitig= 0.0041,M, = 0.05, and" = 0.27.
Note the grid spacing used in the solution may appear to be insufficient in resolving
relevant near-field source terms. However, it can be shown that the relevant source
length scale is the length scale describing the hydrodynamic pressure variation. This sc
adequately resolved withx; = 2r, and was verified by performing a grid sensitivity study
[22, 27]. For grid spacings less thax; = 3r, the solution was shown to be grid indepen-
dent. The solution shown in Fig. 1cis seen to be in good agreement with the outer (acou
portion of the MAE solution, at least fog > 40. Some differences are seen near the vorte
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FIG. 1. Spinning vortex pair. (a) Configuration. (b) Acoustic density field. The computational grid (eve
other grid point shown for clarity) is deformedx210® times the acoustic density field, which ranges betweer
—4x 1075 and 4x 10°5; dark lines outline the PML region. (c) Comparison of computed and MAE predicte
acoustic pressure favl, = 0.05.
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cores (o < 10) and near the first peak in the acoustic fielg£ 30). These differences are
due to three principal reasons. First, the MAE solution only includes quadrupole tel
(i.e., higher-order effects such as those due to octupole terms were excluded in the |
analysis). These higher-order terms are inherently included in the EIF approach. Sec
the MAE solution was obtained using linearized acoustic equations in the outer reg
such that only the first terms in the outer expansion used in the current investigation \
considered. In addition, the MAE solution does not account for flow—acoustic interact
effects. This point will be addressed in more detail in part B of this section. Third, the E
solution represents a combination of near-field compressibility and acoustic waves.
fact is evident by the matching procedure performed between the near-field EIF equat
and the outer region wave equations in the previous section. In contrast, the MAE solu
contains only the acoustic component of pressure. The near-field compressibility eff
were evaluated by solving Eqgs. (13a) and (13b)dorNote that Eq. (13a) does not in-
clude a time derivative g#’, such that the resulting solution does not propagate as acou:
waves. Significant compressibility effects were seen ot £620, accounting for some of

the differences between the EIF and MAE solutions seen in this region.

Relevant flow features and computed acoustic pressure contours for the forced pl
shear layer are shown in Fig. 2. For this flow, the hydrodynamic source terms were ¢
puted using an incompressible Navier—Stokes solver [23, 24] at ReAus/u = 250,
wheres is the shear layer thickness at the inlet givetd By Au/|9U1/9X2|max, @NdAU is the
velocity difference across the shear layer. The perturbation solution was computed us
high-speed Mach numbeiys) of 0.50 and a low-speed Mach numbdf, ) of 0.25. The
hydrodynamic grid used in the incompressible flow solution extended approximately 5
in the x; direction and 15 in the x, direction. This grid had 117,530 points (73061)
and was clustered toward the shear layer centerkipe- Q) with a minimum spacing of
0.045. The hydrodynamic inlet velocity was specified using an error function profile giv
by u1(X2, t) = (Uavg/2) + (Au/2)[erf(x2/0)], whereuay is the average of the high- and
low-speed stream velocities. Forcing was applied at the fundamental and first subharmn
frequencies using sine functions with an amplitude of 0.@002This amplitude was just
high enough to get the shear layer to roll up and overcome the dissipation inherent ir
numerical scheme. A low level of forcing was selected to minimize the resulting no
source at the hydrodynamic inlet, and as a result the hydrodynamie field appears some
diffusive. The acoustic domain was designed such that the computational grid exter
five wavelengths at the subharmonic frequency above and below the hydrodynamic gri
uniform grid with 80,571 grid points and a spacingiof; = 0.1455 was used. This provided
sufficient resolution (approximately 15 grid points) of the pressure field associated with €
subharmonic vortex. The source terms and unsteady components of each incompre:
flow variable used in the acoustic solution were gradually decayed betwgen- 145 and
X1/8 =220 using a linear decay function. These variables were also decayed near the in
reduce the effects of forcing on the acoustic solution. Several variations of the downstr
decay (e.g., different decay lengths, location of decay, and exponential decay functi
were used in computing the acoustic solution. These variations, which were shown to |
no significant effect on the far-field solution, demonstrated that the decay region did no
as a source of sound. A highly directive acoustic field was predicted with a peak directi
near 30 below the centerline of the shear layer. This acoustic field has been shown [22
be in good agreement with results obtained from DNS computations [28].



394 SLIMON, SOTERIOU, AND DAVIS

/] 4

1
fooe] I
— H #
| o 1 !

1 s
- » 1 ,"
6 H & o
] .,  High Speed Stream g B
B \\ (Mach No. = M) fr( ,"’ Region of
i . i ; 7 Hydrodynamic
e \\ | / 2 / Gradient:

Error Function | =
Inlet Profile | B
o - Y Rl it S0
: ”,’ /, \‘\. ‘\._\\ ‘1“"'“-___
el /" Low Speed Stream "< _ e
P 2 (Mach No.=M, ) SNL
- 1 i 5, M
& : /(’ \\‘ ‘
N # M, /M, =0.5 \\ Acoustic Propagation
- b
kY
b =
)
J -

FIG. 2. Planar shear layer. (a) Vorticity contours. Contours range betwéed5 and 0.25; dark shading
represents regions of high vorticity, contour lines are inverted to highlight vorticity field (light contour line
indicate high vorticity). (b) Dilatation field foMys = 0.50 case. Contour levels range betwee0 x 10~7 and
3.0x 1077 at intervals of 30 x 1078,

B. Comparison of)(s?)-, O(¢%)-, and Baseline Composite EIF Equations

Equations (29a) and (29b) are fairly complex and require the computation of gradie
for several terms and/or groups of terms. This complexity is due to the inclusion of the hi
ordere terms, which are required to extend the approach to moderate Mach numbers. M
flows of practical interest, however, are characterized by low Mach numbers. For such flc
low-order equations, such &Xs?) andO (%), may provide sufficiently accurate solutions
at significantly reduced computational cost and code complexity. To investigate this,
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O(£?)- andO(¢*)-composite EIF equations have been applied to the spinning vortex
and shear layer problems described above.

The acoustic fields for the spinning vortex pair have been computed at three diffe
rotating Mach numberdyl, =0.05, M, =0.10, andM, = 0.20, which correspond to vortex
circulations ofr =0.628,I' =1.257, and” = 2.513, respectively. The peak Mach number:
for these cases are 0.125, 0.25, and 0.50. Figure 3 shows the difference between the ac
density fields computed with the baseline &d?)-equations for each; . The difference
range (i.e., the difference iip’, whereAp’ = p/ ..— pmin) listed on these figures excludes
the range associated with the small circular region of radiug, t@ntered in the compu-
tational domain. The relatively large differences in this region are believed to be due
different resolution of the near-field compressibility of the flow (e.g., the near-field dens

b

2 4 2 4

E £ E E
Difference Range  1.9x10°  3.6x10™" Difference Range  5.0x10°  2.0x10°
Relative Error 4.8% 9.ﬂx10‘6% Relative Error 9.1% 3.6xll)4%

Cc

Difference Range 1.3.\;11]'J 5.0x10°°

Relative Error 28.8% 0.1%

FIG.3. Spinning vortex pair—difference between computed density fields using the baselirfesandations.
(a) M, =0.05. 20 contour levels are shown betweef.5 x 10 and 15 x 107°%; a circle with radius 16 is
shown centered on the origin. (b), = 0.10. 20 contour levels are shown betweef 0 x 106 and 50 x 1075,
(c) M, = 0.20. 20 contour levels are shown betweeh5 x 102 and 15 x 102,
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resolved by th€ (¢2)-equations includes only the first term in the Janzen—Rayleigh expe
sion of the inner region density, whereas that resolved bytaé)-equations includes the
first and second terms). As a result, this error does not appear to propagate out to tr
field. A measure of relative error can be assessed by considering the ratio of the differt
range to the acoustic density field range computed using the baseline equations. Tt
shown below for computing the relative error associated withthe?)-equations,

(AP/)eZ-Eqs — (AP )gaseline Egs
(Ap')Baseline Egs ’

Relative Error= (33)

The relative errors have been determined for ddigtand are included in Fig. 3 for both
the O(£?)- andO(e*)-solutions (excluding the difference range associated with the circul
region described above). The solution obtained withie*)-equations is effectively the
same as the solution obtained with the baseline equations. The relative error associatec
the O(¢?)-equations is seen to increase with increasing Mach numbeMFer0.05, the
relative error was less than 5%, fbt, = 0.10, the relative error was approximately 10%,
and for M; =0.20, the relative error was over 25%. Line plots of the difference betwe
the baseline(¢?)-, andO(s*)-solutions are shown in Fig. 4 along the°4fe from the
origin to the upper right-hand side of the computational domain. The range shown in th
plots excludes the difference range associated withl6r,, consistent with Fig. 3. For
comparison purposes, Figs. 4a, 4b, and 4c also include the baseline solution multif
by scale factors of 0.035, 0.10, and 0.25 k= 0.05, 0.10, and 0.20, respectively. These
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FIG.4. Spinning vortex pair—differences between solutions of perturbation densityaleng,. Differences
are between the solution obtained with the baseline equations and the solutions obtained usingrttie*-
equations. (aM, = 0.05. (b)M, = 0.10. (c)M, =0.20.
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FIG. 4—Continued

factors were selected so that the scaled baseline solutions approximately match the amp
of the difference range of each computed solution over most of the acoustic domain.
provides another measure of the error associated wittOi€)- and O(¢*)-equations
relative to the baseline EIF equations and verifies that the relatively large differences ¢
near the origin do not propagate out to the far field.
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Mach Number (M,.): 0.50 0.25
Difference Range (¢>-Baseline): 4.5x10°  6.6x10°®
Relative Error: 18% 16%

FIG.5. Planar shear layer—difference between computed density fields using the basekfeguodtions.
(a) Mys =0.50. (b)Mys = 0.25. The square inset in Fig. (5b) is the size of the entire computational domain sho
in Fig. (5a).

For the planar shear layer, the acoustic fields have been computed with(tRe,
O(e%-, and baseline composite EIF equations using two-high-speed stream Mach n
bers,Mpys=0.50 andMus=0.25. In each of these cases, the ratio of low- to high-spee
stream Mach numbers was 0.5. Similar to the spinning vortex pair, results usiégafie
equations are virtually identical to those using the baseline EIF equations. Figure 5 sh
the difference between solutions obtained with the baseline¥@ad)-equations for the
Mys = 0.25 andMys = 0.50 cases. These differences exclude the region of significant nc
zero hydrodynamic gradients (i.e., the region excluded in the Fig. 2b acoustic field) for
same reason thatthe small circular region is excluded in the evaluation of the spinning vc
pair solutions. Consistent with the spinning vortex pair simulations, the relative error w
theO(¢?)-equations is higher for the higher Mach number caseMigy= 0.25, the relative
error was approximately 16%, and fivtys = 0.50 this error was approximately 18%.

In contrast to the spinning vortex pair problem, the relative error does not provide
best indication of the performance of tt¥s2)- and© (¢*)-equations as a function of Mach
number for the shear layer problem. This is because the amplitude of the acoustic wav
the far field varies significantly withl, wheref is the angle measured counter-clockwise
from the centerline of the shear layer. Therefore, the relative error would not necess:
reflect significant sound pressure level (SPL) differences for low-amplitude waves. A be
indication of the performance of tii@(¢?)-equations for this flow is provided by comparing
the computed far-field directivity patterns. Figure 6 shows the directivity patterns using
baseline and)(s?)-equations for both Mach number cases. For the lower Mach numk
case, little difference (i.e., less than 2 dB) is seen in the solutions computed using
baseline and (¢?)-equations over the entire rangesofFor the higher Mach number case,
the basic character of the directivity pattern obtained with the baseline equations was
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Baseline EIF
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FIG. 6. Planar shear layer—predicted far-field directivity pattern (normalized sound pressure level, dB)
tained using the baseline apttequations. (aMys = 0.25. (b) Mys = 0.50.

obtained with theD(e?)-equations as shown in Fig. 6b. However, significant difference
are seen in the high-speed stream side, in particular for waves that propagate upstreat
theug; flow field (i.e., for6 > 60°).

The O(e*)-equations are not significantly simplified as compared to the baseline eq
tions. Because of this, there is little computational advantage in using@f®-equations
instead of the baseline equations. For example, use obiaé)-equations reduces the
computational time by less than 5%. In contrast, ¢he?)-equations are considerably
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simplified relative to the baseline equations and result in a 30% reduction in computatic
time. Furthermore, thé(¢?)-equations are significantly easier to implement into a nume
ical solver. For low Mach number flows, the baseline equations have been shown to ¢
little improvement over thé& (¢2)-equations in predicting far-field noise levels and direc
tivity patterns. Because of this, and because of the benefits associated with the simp
form of the O (¢?)-equations, these equations are recommended for flows with peak M:
numbers less than approximately 0.25.

C. Comparison with Acoustic Analogies

In the previous section, the effects of truncating the EIF equations to lower orders
were computationally evaluated using two unsteady flow problems. Some of the ben
of the EIF approach can be demonstrated by comparin@iiaé)-, O(¢*)-, and baseline
composite EIF equations with the acoustic analogies described previously in this pa
To that end, two modified versions of Egs. (29) were evaluated. The first modification
not include the flow—acoustic interaction terms or &g, ug; Ugj)/9X; term. The acoustic
analogy formulation corresponding to this modification is Lighthill's equation, Eq. (1), wif
Tij = poUoi Ugj . The second moadification consisted of Egs. (29) without the flow—acous
interaction terms. Thus, the acoustic analogy formulation corresponding to this modifi
tion includes the first compressible correction term (Term I) of Eq. (32). Figure 7 shows
difference between the baseline solution and the solutions obtained with these two mc
cations for the three spinning vortex pair cases considered earlier. For reference, this fi
includes the difference between the baseline @uaef)-solutions. The first compressible

a 0.000002
------- ¢’ - Baseline
———— Mod. 1 - Baseline
Mod. 2 - Baseline
0.000001 | |
&
‘@
]
1
[=]
=
2 0
s
£
2
S
[
-0.000001
-0.000002 0 150

/T

FIG.7. Spinning vortex pair—differences between solutions of perturbation densityaleng,. Differences
are between the solution obtained with the baseline equations and the solutions obtained usingvibe. 1,
and Mod. 2 equations. (&), = 0.05. (b) M, = 0.10. (c)M, = 0.20.
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FIG. 7—Continued

correction term is seen to have little effect on the solution for all tiMeeases considered.
For the M, =0.05 case, the&(s?)-solution provides little improvement in error relative
to the solution obtained with Lighthill's incompressible source term. However, significe
improvement is evident for the highst, cases (e.g., &, = 0.20 the error is reduced by
a factor of 2).
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Baseline EIF

Modification 1
| ———— Modification 2 }-..

Baseline EIF
Modification 1

.-| ——— Modification 2 § ]

FIG. 8. Planar shear layer—predicted far-field directivity pattern (normalized sound pressure level, dB)
tained using the?-, Mod. 1, and Mod. 2 equations. (8)4s = 0.25. (b) Mys = 0.50.

The first and second modified forms of Egs. (29) were also applied to the shear layer p
lem. Figure 8 shows the directivity patterns for tgs = 0.50 and 0.25 cases using these
modified equations. In addition, this figure shows the results obtained using the baseline
equations. Large errors relative to the baseline results are seen using the modified equi
and are attributed to the neglect of the flow—acoustic interaction terms. For this flow, wt
has a large region with significant hydrodynamic velocities and velocity gradients (i.e
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large A as described in Section II-E, the flow—acoustic interaction terms play an import
role in the convection and refraction of sound. Acoustic analogies that do not include tt
terms cannot capture the superdirective character of the acoustic field predicted with
and the EIF approach. Of interest is that the second modified equation (i.e., the equi
that includes the effects of Term | of Eq. (32)) does not improve the comparison w
the baseline EIF equation solution. One explanation for this is that this term is balan
at least in part, by the flow—acoustic interaction terms that have the same ordesof
Term |.

IV. CONCLUSIONS

A Janzen—Rayleigh expansion of the compressible flow equations has been perfol
that, to lowest order, describes the low Mach number approximation of a thermodyna
field. Results of the expansion, in conjunction with an additive composition matching p
cedure, have been used to develop the EIF equations, which have been shown to inclu
infinite power series iM?2. Relations between the hydrodynamic density and hydrodynan
pressure fields, and between the acoustic pressure, acoustic density, and hydrodynami
sity fields, are essential elements in the EIF approach. These relations have been estak
using the Janzen—Rayleigh expansion.

Two low-order approximations of the baseline EIF equations have been developed. T
equations, referred to as tBie?)- andO(¢*)-composite EIF equations, include terms up tc
orderM? andM?, respectively. Th&(g?)-, O(¢%)-, and baseline composite EIF equation:s
have been tested using two unsteady flow problems, the spinning vortex pair and a fo
planar shear layer. The error associated with the use of the lower-order approximat
increases with the Mach number. However, both of these approximations have been sl
to yield adequate acoustic predictions, as long as the Mach number is below approxim:
0.25. TheO(e?)-equations require approximately 30% less CPU time than the basel
equations, are much simpler to program, and are therefore recommended for low N
number (M <0.25) simulations.

Acoustic analogy formulations of each of the equations (R¢s?)-, O(s*)-, and baseline
equations) have also been developed. Each of these formulations includes flow—acc
interaction terms, which cannot be accounted for using the standard acoustic analog
lution approach. Without these terms, té&s?)-equation closely resembles Lighthill's
acoustic analogy, along with an additional term that is identical to one of the compress
ity correction terms due to Ristorcelli. Numerical simulations have shown that without 1
flow—acoustic interaction terms, the acoustic analogies are not able to predict the hi
directional character of subsonic shear layers.

APPENDIX: NOMENCLATURE

¢ local speed of sound

C, ambient speed of sound

Cp specific heat

Fi  body force per unit volume

ko reference thermal conductivity
¢ inner region length scale
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L. reference length scale

M Mach number

M;  rotating Mach number

p pressure

pn  nthterm ininner regiorp expansion
Pn €""Pn

p. hydrodynamic pressure

p’  perturbation pressur@ = > _,e2"pn
p1  time-averaged hydrodynamic pressure
Pr Prandtl number

o] heat flux vectorg (KT)/9X;

Oni  9(KTn)/0X;

g” heat release per unit volume

o rotation radius, vortex pair

Re  Reynolds number

t inner region time

t outer region time

T temperature

Tn  nthtermininner regiom expansion
Th 82”1?”

T reference temperature

Tij Lighthill's stress tensor

T\ orderM? component off;;

U velocity vector component indirection
Uni  nthterm ininner regiom; expansion
Upi  &2"Up;

u/  perturbation velocity vector, = Y"1 ;62 Ui

U, reference velocity

Au  streamwise velocity difference across shear layer
Ua,g average streamwise velocity in shear layer

inner region Cartesian coordinates

outer region Cartesian coordinates

shear layer thickness

Kronecker delta

perturbation parametes{ = y M?)

dissipation function

specific heat ratio

circulation

acoustic wavelength

characteristic length of acoustic source region extent
dynamic viscosity

reference dynamic viscosity

pressure—density relation term of ordét

density

nth term in inner regiop expansion

€2n,0_n

X

>

:|§;7;;>>)'1~<.e.m:o:om_>_<

=}

> D
S o
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p1 hydrodynamic density

o' perturbation densityy’ = > _,e2"pm
P reference density

Tjj  Viscous stress tensor
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